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1 Boundary Conditions

Consider a rectangular strip of height w and length [ that has been inverted into a mobius strip.
The electron is confined on the mobius strip and changes face for every loop. The boundary
conditions are therefore:
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2 The Eigensystem
The Schrodinger equation is:
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Since the electron is confined to the mobius strip of zero potential:
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It can be assumed that the wavefunction can be split like ¥(z,y) = f(x)g(y), thus:
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where we have defined k, and k, as the second partial derivative terms. Using this, we have the
following differential equations:
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It is trivial to find the solutions to the two equations as:
f(z) = ¢y cos(kzx) + co sin(kyx) (10)
9(y) = cs cos(kyy) + casin(kyy). (11)



Now we are in the position to use our boundary conditions for the mobius strip. Using the first
boundary condition:
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Equation 13 presents two possibilities, either ¢4 = 0 or sin(k,w/2) =0

Case 1: ¢4 = 0, which leads to

9(y) = cz cos(kyy). (14)
The wavefunction is zero at the boundary, so:
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Hence,
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Case 2: sin(kyw/2) = 0, which leads to
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and
g(%) =c3 cos<2%l%) = ¢z cos(mn) =0, (18)
so c3 = 0 and
9(y) = casin(k,y) (19)

We have derived the two cases for our first boundary condition. To summarise:

{Case 1: ¢s =0, ky = 227, g(y) = c5cos(kyy) (20)
Case 2: ¢3 =0, k, = 222 g(y) = cysin(kyy)
Now lets define new constants:
Ay = cie3, Ay = o3, A3 = creq, Ay = cocy. (21)
We require that our wavefunction satisfies boundary condition two. Starting from the cases,
Case 1:
Y(z,y) = Ay cos(kgyz) cos(kyy) + Ag sin(kyx) cos(kyy) (22)

Using the second boundary condition:

A cos(kg [z + 1)) cos(kyy) + Az sin(ky [z + 1]) cos(kyy) = Aq cos(kyx) cos(kyy) + Az sin(kzx) Cos((ky)y)
23
Aj cos(ky[z +1]) + Agsin(ky[x + 1]) = Ay cos(kzx) + Ag sin(k,x) (24)

This equation needs to hold for all « so it needs to hold for = 0. Therefore:

A cos(kgl) + Agsin(k,l) = Ay (25)
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Case 2:
Through a similar process, it is easy to show that
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Now we have two k, expressions and two k, expressions corresponding to the two cases. Thus,
using Equation 8:
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Equation 28 is the energy eigenvalues of the ., (z,y) eigenstate for a particle under mobius strip
boundary conditions. Despite what Tony Stark may have lead you to believe, finding the eigenval-
ues of the mobius strip does not enable time travel, but it is an interesting problem nonetheless.



