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1 Boundary Conditions

Consider a rectangular strip of height w and length l that has been inverted into a mobius strip.
The electron is confined on the mobius strip and changes face for every loop. The boundary
conditions are therefore:

ψ(x,−w

2
) = ψ(x,

w

2
) = 0 (1)

ψ(x+ l, y) = ψ(x,−y) (2)

2 The Eigensystem

The Schrödinger equation is:
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ψ(x, y) + V (x, y)ψ(x, y) = Eψ(x, y). (3)

Since the electron is confined to the mobius strip of zero potential:
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ψ(x, y) = Eψ(x, y). (4)

It can be assumed that the wavefunction can be split like ψ(x, y) = f(x)g(y), thus:
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2m
(k2x + k2y) = Ex + Ey, (8)

where we have defined kx and ky as the second partial derivative terms. Using this, we have the
following differential equations:

1
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∂x2
= −k2x and

1

g(y)

∂2g

∂y2
= −k2y. (9)

It is trivial to find the solutions to the two equations as:

f(x) = c1 cos(kxx) + c2 sin(kxx) (10)

g(y) = c3 cos(kyy) + c4 sin(kyy). (11)
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Now we are in the position to use our boundary conditions for the mobius strip. Using the first
boundary condition:
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= 0. (13)

Equation 13 presents two possibilities, either c4 = 0 or sin(kyw/2) = 0

Case 1: c4 = 0, which leads to

g(y) = c3 cos(kyy). (14)

The wavefunction is zero at the boundary, so:
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= 0 (15)

Hence,

ky
w
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2
π −→ ky =

2n+ 1

w
π (16)

Case 2: sin(kyw/2) = 0, which leads to

ky
w

2
= nπ −→ ky =

2πn

w
, (17)

and
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= c3 cos(πn) = 0, (18)

so c3 = 0 and

g(y) = c4 sin(kyy) (19)

We have derived the two cases for our first boundary condition. To summarise:

󰀫
Case 1: c4 = 0, ky = 2n+1

w π, g(y) = c3 cos(kyy)

Case 2: c3 = 0, ky = 2πn
w , g(y) = c4 sin(kyy)

(20)

Now lets define new constants:

A1 = c1c3, A2 = c2c3, A3 = c1c4, A4 = c2c4. (21)

We require that our wavefunction satisfies boundary condition two. Starting from the cases,

Case 1:

ψ(x, y) = A1 cos(kxx) cos(kyy) +A2 sin(kxx) cos(kyy) (22)

Using the second boundary condition:

A1 cos(kx[x+ l]) cos(kyy) +A2 sin(kx[x+ l]) cos(kyy) = A1 cos(kxx) cos(kyy) +A2 sin(kxx) cos(kyy)
(23)

A1 cos(kx[x+ l]) +A2 sin(kx[x+ l]) = A1 cos(kxx) +A2 sin(kxx) (24)

This equation needs to hold for all x so it needs to hold for x = 0. Therefore:

A1 cos(kxl) +A2 sin(kxl) = A1 (25)
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so

kxl = 2πm −→ kx =
2πm

l
(26)

Case 2:
Through a similar process, it is easy to show that

kx =
2m+ 1

l
π (27)

Now we have two kx expressions and two ky expressions corresponding to the two cases. Thus,
using Equation 8:

Emn =
󰄁2

2m

󰀫
( 2πml )2 + ( 2n+1

w π)2 - Case 1

( 2m+1
l π)2 + ( 2πnw )2 - Case 2

(28)

Equation 28 is the energy eigenvalues of the ψmn(x, y) eigenstate for a particle under mobius strip
boundary conditions. Despite what Tony Stark may have lead you to believe, finding the eigenval-
ues of the mobius strip does not enable time travel, but it is an interesting problem nonetheless.
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