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Light travels slower in water than in air, and slightly slower in air than in a vacuum. This is quantified
by the refractive index n = c/v, where c is the speed of light in a vacuum and v is the speed of light in the
medium. In this report, we will quantitatively investigate why light slows down in mediums such as water and
its implications.

1 Derivation
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Figure 1: Electric waves
passing through a thin plate
of material

Suppose there exists a source at point S which is emitting EM radiation toward the
point P through a thin plate made of some material. We will ignore the magnetic field
component of the EM wave and consider only the electric field. The electric field from
the source will interact with the electrons in the material and cause them to oscillate,
which induces secondary electric fields since accelerating charges create EM radiation.
The total field at P is the sum of all these contributions. Thus:

EP = ES +
󰁛

all electrons

Eeach electron (1)

where EP and ES are the electric fields at P and S respectively, and Eeach electron is the electric field produced
by one electron’s oscillations. The field felt at P is modified by the material and it is modified in such a way
that the field in the material seems to be moving at a different speed.

We will now derive the form of the electric field at P assuming there exists a refractive index n. For sim-
plicity, I will assume the field generated by a charge does not interact with any other charges in the material.
The source generates an electric field given by

ES = E0e
iω(t−z/c). (2)

We know the field travels at a different speed v in the plate of thickness ∆z. The time taken by light to
pass through the plate is n∆z/c. Or, the time delay caused by the plate compared to a vacuum is ∆t =
∆z/c− n∆z/c = (1− n)∆z/c. Taking into account this time delay, Equation 2 becomes

Eafter plate = E0e
iω(t−(1−n)∆z/c−z/c) (3)

= E0e
−iω(n−1)∆z/ceiω(t−z/c) (4)

According to Equation 4, instead of the induced electric fields changing the amplitude of the original electric
field, they instead add on a factor of e−iω(n−1)∆z/c which shifts the phase of the original wave. A block of some
material can be thought of as many of these plates combined together. Each plate induces a phase shift and
it turns out that these phase shifts combined gives the illusion of light travelling at a different
speed in the material. Taking the second order power expansion, Equation 4 becomes

Eafter plate = E0

󰀕
1− iω(n− 1)

∆z

c

󰀖
eiω(t−z/c) (5)

= E0e
iω(t−z/c) − iω(n− 1)

∆z

c
E0e

iω(t−z/c). (6)

The first term is from the source, and the second term is the field produced by the oscillating charges. Equation
6 will be used later.
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We have now derived the form of the equation describing the consequences of the refractive index. We now
need to do the most important bit - to show that a refractive index n shows up in the first place! We will assume
that each electron in the material is fastened using springs and they are allowed to oscillate up and down in the
x direction. The driving force will be ES and the restoring force will be provided by the springs. Thus,

m

󰀕
d2x

dt2
+ ω0x

󰀖
= eE0e

iωt. (7)

Note in Equation 7, z = 0 since that’s where the plate’s position is defined to be at. Solving this second order
differential equation gives the general solution

x = x0e
iωt. (8)

Substituting this back into Equation 7 returns

x0 =
eE0

m(ω2
0 − ω2)

(9)

and thus

x =
eE0

m(ω2
0 − ω2)

eiωt. (10)

Figure 2: The field at P due to the sum
of all the charges in the plate.

We now want to find the field produced by the sum of oscillating charges in
the plate. Consider the setup in Figure 1.

The position of each charge at a given time can be represented as x0e
iωt.

The contribution to the field at point P is proportional to the acceleration
of the corresponding charge at a retarded time, given by

−ω2
0x0e

−iω(t−r/c). (11)

Now the equation for the actual electric field produced is far too tedious to
prove so I will simply state it as

E′
P =

−q

4π󰂃0c2r
a
󰀓
t− r

c

󰀔
(12)

=
e

4π󰂃0c2
ω2
0x0e

−iω(t−r/c)

r
. (13)

This is only the field contribution for one charge, for all the charges we will set up an integral using η as the
charge density. Thus, the total field at P is

EP =

󰁝
e

4π󰂃0c2
ω2
0x0e

−iω(t−r/c)

󰁳
ρ2 + z2

η · 2πρ dρ (14)

= − ηe

2󰂃0c
iωx0e

iω(t−z/c) (15)

We can now use Equation 9 to get

EP = − ηe

2󰂃0c
iω

eE0

m(ω2
0 − ω2)

eiω(t−z/c). (16)

As we expect, the oscillating charges in the plate produce a wave propagating to the right. Comparing Equation
16 with Equation 6, they will be equal when

(n− 1)∆z =
ηe2

2󰂃0m(ω2
0 − ω2)

(17)

and noting that η = N∆z, where N is the number of electrons per unit volume:

n = 1 +
Ne2

2󰂃0m(ω2
0 − ω2)

(18)

2



2 Consequences

In Section 1, we found that

n =
c

v
= 1 +

Ne2

2󰂃0m(ω2
0 − ω2)

. (19)

We will consider several predictions based on this equation.

2.1 Dispersion

The index of refraction depends on the frequency ω of the light. The index increases for higher frequencies.
This is known as Dispersion and it is the reason why blue light is bent more than red light through a prism.

2.2 Causality

Figure 3: Multiple frequencies summed
together to carry a signal

A surprising consequence emerges if we imagine shining high frequency X-
rays on matter, or radio waves on free electrons (free electrons have no
restoring force so ω0 = 0). In these two cases, the factor (ω2

0 −ω2) in Equa-
tion 19 becomes negative, which implies that n = c/v < 1 or v > c. Our
whole framework appears to be wrong because information travelling faster
than light violates causality! However, it turns out that what we have done
is indeed correct because v is the phase velocity of light, i.e. the speed of
each node of the wave. A node by itself is not a signal and cannot carry any
information. To encode information into the wave, you’ve got to change the
shape of the wave. To do this, the wave has to be constructed by multiple
different frequency sinusoids. It turns out that the speed information travels
at is not dependent on the index n alone, but upon the way n changes with the frequency. Lets now set out to
demonstrate this.

Phase Velocity:

Consider a sinusoidal wave y = cos(kx− ωt). To find the speed of one crest on the wave we set the argu-
ment to zero, and differentiate with respect to t.

kx− ωt = 0 (20)

k
dx

dt
− ω = 0 (21)

vphase =
ω

k
(22)

This is known as the phase velocity and it is the speed that individual peaks of the wave travels at.

Group Velocity:

Now lets construct a signal by adding two waves together:

e−i(k1z−ω1t) + e−i(k2z−ω2t) = e−i[(k1+k2)z−(ω1+ω2)t]/2
󰁱
ei[(k1−k2)z−(ω1−ω2t)]/2 + e−i[(k1−k2)z−(ω1−ω2t)]/2

󰁲
. (23)

The factor in front of the brackets describes the wave itself (Carrier Wave in Figure 3), with speed vphase = ω/k.
The expression inside the brackets describe the modulation wave (Message Wave Envelope in Figure 3). The
modulation wave travels at a speed known as the group velocity:

vgroup =
ω1 − ω2

k1 − k2
=

dω

dk
(24)

If we made a signal; some kind of change in the wave that can be recognised if one listens to it, a modulation
signal, then that modulation signal would travel at the group velocity. Therefore, the group velocity is the
speed that information propagates at.
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If we shine X-rays on a material, then ω2
0 − ω2 ≈ −ω2, so Equation 19 becomes

n = 1− Ne2

2󰂃0mω2
. (25)

Using Equation 23, noting that n = c/v = kc/ω and rearranging,

k =
ω

c
− a

ωc
(26)

where a = Ne2/2󰂃0m. Differentiating Equation 26,

dk

dω
=

1

c
+

a

ω2c
=⇒ dω

dk
=

c

1 + a/ω2
= vgroup (27)

which is always less than or equal to the speed of light! So even though each crest of the wave may travel faster
than c, the modulation signals (information carrying wave), never travels faster than c. Note that in a perfect
vacuum, N = 0, so a = 0, and therefore vgroup = c which is the maximum speed that information can travel at.

2.3 Absorption

An improvement to Equation 19 is to consider the charges not as perfect oscillators, but damped oscillators. So
in the denominator we change (ω2

0 − ω2) to (ω2
0 − ω2 + iγω). Also the charges have multiple different resonant

frequencies ωk for k = 0, 1, 2, ..., etc. If we include these effects, the more accurate model is described by

n = 1 +
e2

2󰂃0m

󰁛

k

Nk

ω2
k − ω2 + iγkω

(28)

The term iγkω in the denominator of Equation 20 means that the index of refraction is complex. That is,
it’s in the form n = nr − ini. To see what this means, we can put this back into Equation 4 to get

Eafter plate = E0e
−iω(nr−ini−1)∆z/ceiω(t−z/c) (29)

= e−ωni∆z/ce−iω(nr−1)∆z/cE0e
iω(t−z/c). (30)

This is the same as Equation 4, except for the extra factor of e−ωni∆z/c at the front. This is a quantity smaller
than 1 which causes Eafter plate to decrease as the thickness of the plate ∆z increases. This is expected since we
have introduced a damping force in the oscillations which cause a loss of energy. The material is absorbing part
of the wave. It is this effect that gives us the dark spectral lines of certain gasses. If the frequency is close to
the resonant frequency of the atoms in the gas, ω ≈ ω0, then the index n is almost purely imaginary, ni >> nr.
Therefore, the extra factor is very small and causes the dark absorption line in the spectrum (Eafter plate << 1).

4


