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2 Time Independent Schrödingerś Equation

2.1 Stationary States

We need to solve the Schrödinger equation,

i󰄁
∂Ψ

∂t
= − 󰄁2

2m

∂2Ψ

∂x2
+ V (2.1)

Assuming that V is independent of t, we can look for the solutions: Ψ(x, t) = ψ(x)φ(t).

For separable solutions we have

∂Ψ

∂t
= ψ

∂φ

∂t
,

∂2Ψ

∂x2
=

dφ

dx
φ (2.2)

and substituting this, the Schrödingerś equation reads

i󰄁ψ
dφ

dt
= − 󰄁2

2m

d2ψ

dx2
φ+ V ψφ (2.3)

i󰄁
1

φ

dφ

dt
= − 󰄁2

2m

1

ψ

d2ψ

dx2
+ V. (2.4)

Now, the left hand side is a function of t alone, and the right hand side is a function of x alone. This is
ONLY true if both sides are constant. Lets call this constant E. Then

i󰄁
1

φ

dφ

dt
= E (2.5)

dφ

dt
= − iE

󰄁
φ (2.6)

and

− 󰄁2

2m

1

ψ

d2ψ

dx2
+ V = E (2.7)

− 󰄁2

2m

d2ψ

dx2
+ V ψ = Eψ (2.8)

The solution to equation 2.6 is simply φ(t) = e−iEt/󰄁. The solution to equation 2.8 is the time-independent
Schrödinger equation and it cannot be solved without specifying the potential V .
The wave function is obtained using

Ψ(x, t) =

∞󰁛

n=1

cnψn(x)e
−iEnt/󰄁 (2.9)

where the set {ψn} is obtained by solving the time-independent Schrödinger equation and |cn|2 is the
probability that a measurement of energy would return the value En. This leads to:

∞󰁛

n=1

|cn|2 = 1 (2.10)

〈H|H〉 =
∞󰁛

n=1

|cn|2En (2.11)
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2.2 The Infinite Square Well

Suppose we have the potential:

V (x) =

󰀫
0, 0 ≤ x ≤ a,

∞, otherwise

Inside the well, the time-independent Schrödinger equation reads

− 󰄁2

2m

d2ψ

dx2
= Eψ (2.12)

d2ψ

dx2
= −k2ψ, where k ≡

√
2mE

󰄁
. (2.13)

The general solution becomes ψ(x) = A sin kx+B cos kx, and applying the boundary condition ψ(0) = 0,
we get ψ(x) = A sin kx. Now applying ψ(a) = 0, we get kn = nπ

a , with n ∈ N.
This leads to

En =
󰄁k2n
2m

=
n2π2󰄁2

2ma2
(2.14)

and

ψn =

󰁵
2

a
sin

󰀓nπ
a
x
󰀔
. (2.15)

Note that two different states are orthonormal:
󰁝

ψm(x)∗ψn(x) dx = δnm (2.16)

These states are also complete - any other function f(x) can be expressed as a linear combination of them:

f(x) =

∞󰁛

n=1

cnψn(x) (2.17)

To find the coefficients cn, we use Fourier’s trick. Multiply both sides of equation 2.17 by ψm(x)∗, and
integrate.

󰁝
ψm(x)∗f(x) dx =

∞󰁛

n=1

cn

󰁝
ψm(x)∗ψn(x) dx =

∞󰁛

n=1

cnδmn = cm. (2.18)

Combining everything together, the stationary states for the infinite potential well becomes:

Ψn(x, t) = ψn(x)e
−iEnt/󰄁 (2.19)

=

󰁵
2

a
sin

󰀓nπ
a
x
󰀔
e−i(n2π2󰄁/2ma2)t (2.20)

The wave function of this potential is then

Ψ(x, t) =

∞󰁛

n=1

cn

󰁵
2

a
sin

󰀓nπ
a
x
󰀔
e−i(n2π2󰄁/2ma2)t (2.21)

where cn =
󰁕 a
0 sin

󰀃
nπ
a x

󰀄
Ψ(x, 0) dx, using Fourier’s trick.
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2.3 The Harmonic Oscillator

In classical mechanics, oscillatory motion is governed by Hooke’s law,

F = −kx = m
d2x

dt2
(2.22)

with solution x(t) = A sin(ωt) +B cos(ωt) where the angular frequency is ω =
󰁴

k
m .

The potential energy is V (x) = 1
2kx

2. If we expand V (x) around the local minimum x0 we get

V (x) = V (x0) + V ′(x0)(x− x0) +
1

2
V ′′(x0)(x− x0)

2 + ..., (2.23)

We can subtract the V (x0) since adding a constant doesn’t change the force, also recognise V (x0) = 0
and drop higher order terms, we get

V (x) ≈ 1

2
V ′′(x0)(x− x0)

2 (2.24)

≈ 1

2
mω2(x− x0)

2. (2.25)

The quantum problem requires us to solve the Schrödinger equation

− 󰄁2

2m

d2ψ

dx2
+

1

2
mω2x2ψ = Eψ. (2.26)

2.3.1 Algebraic Method

1

2m

󰀅
p̂2 + (mωx)2

󰀆
ψ = Eψ (2.27)

We cannot factor the brackets using complex numbers because operators do not necessarily commute.
This motivates the quantities

â± ≡ 1√
2󰄁mω

(∓ip̂+mωx) (2.28)

The product â−â+ becomes

â−â+ =
1

2󰄁mω
(ip̂+mωx)(−ip̂+mωx) (2.29)

=
1

2󰄁mω

󰀅
p̂2 + (mωx)2 − imω(xp̂− p̂x)

󰀆
(2.30)

=
1

2󰄁mω

󰀅
p̂2 + (mωx)2

󰀆
− i

2󰄁
[x, p̂] (2.31)

=
1

󰄁ω
Ĥ +

1

2
. (2.32)

Similarly,

â+â− =
1

󰄁
ωĤ − 1

2
. (2.33)

In particular, [â−, â+] = 1. Meanwhile, the Schrödinger equation takes the form

󰄁ω
󰀕
â±â∓ ± 1

2

󰀖
ψ = Eψ (2.34)

It can be shown that if ψ satisfies the Schrödinger equation with energy E, then â+ψ satisfies the equation
with energy (E + 󰄁ω). Similarly, â−ψ satisfies the equation with energy (E − 󰄁ω).

There occurs a ”lowest rung” such that â−ψ0 = 0:

1√
2󰄁mω

󰀕
󰄁
d

dx
+mωx

󰀖
ψ0 = 0 (2.35)

or

dψ0

dx
= −mω

󰄁
xψ0. (2.36)
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Whose solution becomes

ψ0(x) =
󰀓mω

π󰄁

󰀔1/4
e−

mω
2󰄁 x2

. (2.37)

To determine the energy of this state we plug it into the Schrödinger equation (2.34) to obtain

E0 =
1

2
󰄁ω. (2.38)

Now that we have defined the ground state of the quantum oscillator, we simply apply the raising operator
repeatedly to generate the excited states while increasing the energy by 󰄁ω each step:

ψn(x) = An(â+)
nψ0(x), with En =

󰀕
n+

1

2

󰀖
󰄁ω. (2.39)

Now we need to find an expression for the coefficients so we are not required to normalise the wave func-
tion each time. We begin by noting that â± is the hermitian conjugate of â∓

󰁝 ∞

−∞
f ∗ (â±g) dx =

󰁝 ∞

−∞
(â∓f) ∗ g dx (2.40)

so that
󰁝 ∞

−∞
(â±ψn)

∗(â±ψn) dx =

󰁝 ∞

−∞
(â∓â±ψn) ∗ ψn dx . (2.41)

Using equation 2.34, we get

â+ψn =
√
n+ 1ψn+1, â−ψn =

√
nψn−1. (2.42)

Thus

ψ1 =
1√
1!
â+ψ0, ψ2 =

1√
2
â+ψ1 =

1√
2 · 1

(â+)
2ψ0, ψ3 =

1√
3
â+ψ2 =

1√
3 · 2 · 1

(â+)
3ψ0

and we have

ψn =
1√
n!
(â+)

nψ0 (2.43)

=
1√
n!

󰀓mω

π󰄁

󰀔1/4
(â+)

ne−
mω
2󰄁 x2

(2.44)

which is the general wave function of the quantum harmonic oscillator with energy level En = 󰄁ω(n+ 1
2).

5



2.4 The Free Particle

The free particle has V = 0 everywhere. The time-independent Schrödinger equation reads

− 󰄁2

2m

d2ψ

dx2
= Eψ (2.45)

or

d2ψ

dx2
= −k2ψ, where k ≡

√
2mE

󰄁
(2.46)

This is the same as the infinite square well, however we prefer to write the general solution in exponential
form:

ψ(x) = Aeikx +Be−ikx (2.47)

Unlike the infinite square well, there are no boundary conditions to restrict the possible values of k (and
hence E). We can attach the standard time dependence e−iEt/󰄁.

Ψ(x) = Aeik(x−
󰄁k
2m

t) +Be−ik(x+ 󰄁k
2m

t) (2.48)

In the first term, we have the argument x− vt so this represents a wave travelling to the right. Similarly
the second term represents a wave travelling to the left. Now since these terms only differ by the sign in
front of k, we can write

Ψk(x, t) = Ae
i
󰀓
kx− 󰄁k2

2m
t
󰀔

, where k ≡ ±
√
2mE

󰄁
, with

󰀫
k > 0 =⇒ travelling to the right.

k < 0 =⇒ travelling to the left.
(2.49)

This wave function is not normalisable. This means a free particle cannot exist in a stationary state; or,
to put it another way, there is no such thing as a free particle with a definite energy. Instead of using
separable solutions, we use the solution of the time-dependent Schrödinger equation which is still a linear
combination of the separable solutions, but only this time it’s an integral over the continuous variable k

Ψ(x, t) =
1√
2π

󰁝 ∞

−∞
φ(k)ei(kx−

󰄁k2
2m

t) dk (2.50)

This wave function can be normalised for an appropriate choice of φ(k). But it carries a range of ks,
and hence a range of energies and speeds. We call it a wave packet. It is a superposition of sinusoidal
functions whose amplitudes are modulated by φ.

If we have the initial wave function

Ψ(x, 0) =
1√
2m

󰁝 ∞

−∞
φ(k)eikx dk , (2.51)

We can find φ(k) by using the Fourier transform:

φ(k) =
1√
2m

󰁝 ∞

−∞
Φ(x, 0)e−ikx dx (2.52)

Given equation 2.63, and assuming φ(k) has is narrowly peaked about some particular value k0, we can
Taylor-expand the function

ω(k) ≈ ω0 + ω′
0(k − k0) (2.53)

Now changing variables s ≡ k − k0

Ψ(x, t) ≈ 1√
2π

󰁝 ∞

−∞
φ(k0 + s)ei[(k0+s)x−(w0+w′

0s)t] dx (2.54)

=
1√
2π

ei(k0x−ω0t)

󰁝 ∞

−∞
φ(k0 + s)eis(x−w′

0t)ds (2.55)

The term in front of the integral is the sinusoidal wave travelling at speed ω0
k0
. It is modulated by the

envelope which is propagating at the speed w′
0. Thus we have

vphase =
ω

k
(2.56)

vgroup =
dω

dk
(2.57)

Now, using ω = 󰄁k2
2m , we conclude that vclassical = vgroup =

󰄁k
m = 2vphase.
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2.5 Delta-Function Potential

Both the infinite square well and harmonic oscillators admit bound states only (E < 0), since potentials
go to infinity as x → ±∞. Whereas the free particle potential is zero everywhere, it only allows scattering
states (E > 0). Note that it is a scattering state if E > 0 for a finite potential due to quantum tunnelling.

Consider the potential of the form V (x) = −αδ(x). The Schrödinger equation takes the form:

− 󰄁2

2m

d2ψ

dx2
− αδ(x)ψ = Eψ (2.58)

which yields both bound states (E < 0) and scattering states (E > 0).

2.5.1 Bound States

In region x < 0, V (x) = 0, so

d2ψ

dx2
= −2mE

󰄁2
ψ = κ2ψ, where κ ≡

√
−2mE

󰄁
(2.59)

remembering that E < 0 so k is real and positive. The general solution to equation 2.59 is

ψ(x) = Ae−κx +Beκx, (2.60)

since the first term blows up, the solution becomes

ψ(x) = Beκx. (2.61)

Similarly in the region x > 0, the solution is

ψ(x) = Feκx. (2.62)

Now since ψ(x) is always continuous, we have F = B, so

ψ(x) =

󰀫
Beκx, x ≤ 0

Be−κx, x ≥ 0
(2.63)

Integrating the Schrödinger equation from −󰂃 to 󰂃, and then take the limit as 󰂃 → 0:

󰄁2

2m

󰁝 +󰂃

−󰂃

d2ψ

dx2
dx+

󰁝 +󰂃

−󰂃
V (x)ψ(x) dx = E

󰁝 +󰂃

−󰂃
ψ(x) dx (2.64)

The first integral is just dψ
dx , evaluated at the two endpoints, while the last integral is zero, in the limit

󰂃 → 0. Thus

∆

󰀕
dψ

dx

󰀖
= lim

󰂃→0

󰀕
∂ψ

∂x

󰀏󰀏󰀏󰀏
+󰂃

− ∂ψ

∂x

󰀏󰀏󰀏󰀏
−󰂃

󰀖
=

2m

󰄁2
lim
󰂃→0

󰁝 +󰂃

−󰂃
V (x)ψ(x) dx (2.65)

=
−2mα

󰄁2
ψ(0) (2.66)

For the cases in equation 2.63, we have
󰀻
󰀿

󰀽

dψ
dx = −Bκe−κx, for (x > 0), so dψ

dx

󰀏󰀏󰀏
+
= −Bκ,

dψ
dx = +Bκe+κx, for (x < 0), so dψ

dx

󰀏󰀏󰀏
−
= +Bκ

(2.67)

Hence ∆(dψdx ) = −2Bκ and ψ(0) = B. So equation 2.66 becomes

κ =
mα

󰄁2
(2.68)

and from equation 2.13, the allowed energies and the wave function is

ψ(x) =

√
mα

󰄁
e−mα|x|/󰄁2 ; E = −mα2

2󰄁2
(2.69)
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2.5.2 Scattering States

Schrödinger equation takes the form

d2ψ

dx2
= −2mE

󰄁2
ψ = −k2ψ, where k ≡

√
2mE

󰄁
(2.70)

The general solution for x < 0:

ψ(x) = Aeikx +Be−ikx, (2.71)

and similarly for x > 0:

ψ(x) = Feikx +Ge−ikx, (2.72)

The continuity at x=0 requires that A+B = F +G. The derivatives are

󰀻
󰀿

󰀽

dψ
dx = ik(Feikx +Ge−ikx), for (x > 0), so dψ

dx

󰀏󰀏󰀏
+
= ik(F −G),

dψ
dx = ik(Aeikx +Be−ikx), for (x < 0), so dψ

dx

󰀏󰀏󰀏
−
= ik(A−B),

(2.73)

and hence ∆(dψdx ) = ik(F −G−A+B). Meanwhile, ψ(0) = A+B. So from equation 2.66

ik(F −G−A+B) = −2mα

󰄁2
(A+B),

or more compactly,

F −G = A(1 + 2iβ)−B(1− 2iβ), where β ≡ mα

󰄁2k2

In typical scattering experiments, particles are fired in from one direction, lets say from the left. This
means that G = 0. Solving equation 2.74 with the constraint equation gives

B =
iβ

1− iβ
A, F =

1

1− iβ
A (2.74)

Now, the fraction of the incoming number that will bounce back is called the reflection coefficient :

R ≡ |B|2
|A|2 =

β2

1 + β2
. (2.75)

Meanwhile, the fraction of particles that will continue through is called the transmission coefficient :

T ≡ |F |2
|A|2 =

1

1 + β2
(2.76)

In terms of energy,

R =
1

1 + (2󰄁2E/mα2)
, T =

1

1 + (mα2/2󰄁2E)
. (2.77)

The higher the energy, the greater the probability of transmission. We have covered the delta-function
well, if we want to have a look at the delta-function barrier, we just need to swap α → −α. Note this
doesn’t change R and T. This means that both the barrier AND well have some probability of reflection!
Note that transmission is still possible even when E > Vmax. We call this phenomenon tunnelling.
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2.6 Finite Square Well

The finite square well has potential

V (x) =

󰀫
−V0, −a ≤ x ≤ a,

0, |x| > a
(2.78)

Figure 1: Finite square well potential

2.6.1 Bound States

In the region x < −a the Schrödinger equation reads

− 󰄁2

2m

d2ψ

dx2
= Eψ,

d2ψ

dx2
= κ2ψ, where κ ≡

√
−2mE

󰄁
(2.79)

The general solution is ψ(x) = Ae−κx +Beκx, but the first term blows up so we are left with

ψ(x) = Beκx, (x > a). (2.80)

In the region −a < x < a, V (x) = −V0, and the Schrödinger equation reads

− 󰄁2

2m

d2ψ

dx2
− V0ψ = Eψ, or

d2ψ

dx2
= −l2ψ (2.81)

where

l ≡
󰁳

2m(E + V0)

󰄁
(2.82)

Although E < 0, it must be greater than −V0 because of the theorem E > Vmin.
The general solution is

ψ(x) = C sin(lx) +D cos(lx), (−a < x < a) (2.83)

Finally in region x > a the potential is zero and the general solution is ψ(x) = Fe−κx+Geκx and removing
the divergent term, the solution becomes

ψ(x) = Fe−κx, (x > a) (2.84)

Since the potential is even, the solutions are either even or odd. Lets first do the evens

ψ(x) =

󰀻
󰁁󰀿

󰁁󰀽

Feκx, (x > a)

D cos(lx), (0 < x < a),

ψ(−x), (x < 0).

(2.85)

The continuity of ψ(x) and dψ
dx at x = a says

Fe−κa = D cos(la) and − κFe−κa = −lD sin(la) (2.86)

Dividing the two equations we get

κ = l tan(la), (2.87)

which is a formula for the allowed energies, since κ and l are both functions of E. We now adopt nicer
notation:

z ≡ la, and z0 ≡
a

󰄁
󰁳

2mV0 (2.88)

and according to the definitions of κ and l, we can derive κ2+ l2 = 2mV0
󰄁2 , so κa =

󰁳
z20 − z2 and equation

2.87 reads

tan z =

󰁵󰀓z0
z

󰀔2
− 1 (2.89)

9



This equation can be solved by plotting tan z and
󰁳

(z0/z)2 − 1 and looking for points of intersection.

Figure 2: Graphical solution to equation 2.89

There are two limiting cases of special interest:

Wide, deep well :
if z0 is very large, the intersections occur slightly below zn = nπ/2 with n odd. Rewriting this
equation, it follows that

En + V0 ≈
n2π2󰄁2

2m(2a)2
, (n = 1, 3, 5, ...) (2.90)

E + V0 is the energy above the bottom of the well, and on the right hand side we have the infinite
square well energies, but for a well of width 2a (rather, half of them because this n is odd). The
number of bound states correspond to the number of intersections on the graph.

Shallow. narrow well :
As z0 decreases, there are fewer and fewer bound states, until for z0 < π/2, only one state remains.
There is always this one bound state, no matter how low the potential (z0) becomes.

2.6.2 Scattering States

We now consider E > 0. To the left, where V (x) = 0, we have

ψ(x) = Aeikx +Be−ikx, (x < −a), k ≡
√
2mE

󰄁
(2.91)

Inside the well, where V (x) = −V0,

ψ(x) = C sin(lx) +D cos(lx), (−a < x < a), l ≡
󰁳

2m(E + V0)

󰄁
(2.92)

To the right, assuming no incoming wave

ψ(x) = Feikx. (2.93)

From the continuity of ψ(x) and its derivative at −a and a, we can eliminate C and D to obtain

B = i
sin(2la)

2kl
(l2 − k2)F, (2.94)

F =
e−2ikaA

cos(2la)− i (k
2+l2)
2kl sin(2la)

. (2.95)

The transmission coefficient (T = |F |2/|A|2), expressed as the original variables is given by

T−1 = 1 +
V 2
0

4E(E + V0)
sin2

󰀕
2a

󰄁
󰁳

2m(E + V0)

󰀖
(2.96)

When the sine is zero, the well becomes transparent, that is

2a

󰄁
󰁳

2m(En + V0) = nπ (2.97)

Rearranging this equation gives the energies for perfect transmission

En + V0 =
n2π2󰄁2

2m(2a)2
(2.98)

which will occur at precisely the allowed energies for the infinite square well.
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3 Formalism of Quantum Mechanics

3.1 Determinant States

Ordinarily, when you measure an observable Q on an ensemble of identically prepared systems, all in the
same state Ψ, you do not get the same result of each time. However, is it possible to prepare a state such
that every measurement of Q is certain to return the same value q?
For this to occur, the standard deviation of Q would be zero:

σ2 =
󰀍
(Q− 〈Q〉)2

󰀎
=

󰁇
Ψ
󰀏󰀏󰀏(Q̂− q)2Ψ

󰁈
=

󰁇
(Q̂− q)Ψ

󰀏󰀏󰀏(Q̂− q)Ψ
󰁈
= 0 (3.1)

Now the only vector whose inner product with itself vanishes is 0, so

Q̂Ψ = qΨ (3.2)

which is the eigenvalue equation for the operator Q̂. Thus

Determinant states of Q are eigenfunctions of Q̂

3.2 Discrete Spectra

Hermitian operators have the following properties

1. Their eigenvalues are real

2. Eigenfunctions belonging to distinct eigenvalues are orthogonal

3. If two or more eigenfunctions share the same eigenvalue, any linear combination of them is itself
and eigenfunction, with the same eigenvalue.

4. The eigenfunctions of an observable operator are complete: Any function in a Hilbert space can be
expressed as a linear combination of them.

3.3 Statistical Interpretation

If you measure an observable Q on a particle in the state Ψ, you are certain to get one of the eigenvalues
of the hermitian operator Q̂.

Discrete: The probability of getting the particular eigenvalue qn associated with the eigenfunction fn(x)
is |cn|2, where cn = 〈fn|Ψ〉.

Continuous: The probability of getting a particular eigenvalue q(z) associated with the eigenfunction
fz(x) in the range dz is |c(z)|2dz where c(z) = 〈fz|Ψ〉.

The eigenfunctions of an observable operator are complete, so the wave function can be written as a linear
combination of them:

Ψ(x, t) =
󰁛

n

cn(t)fn(x) (3.3)

and using Fourier’s trick:

cn(t) = 〈fn|Ψ〉 =
󰁝

fn(x)
∗Ψ(x, t) dx . (3.4)

Qualitatively, cn tells you how much fn is contained in Ψ and |cn|2 is the probability of the measurement
being the eigenstate fn when you measure Ψ. It’s a common misconception that |cn|2 is the probability
of the system being in the state fn. This is not true because the system is in the state Ψ, period. It is
rather the probability of a measurement yielding fn and hence collapsing the wave function to fn.
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3.4 Heisenberg’s Uncertainty Principle

From equation 3.1, we have

σ2
A =

󰁇
(Â− 〈A〉)Ψ

󰀏󰀏󰀏(Â− 〈A〉)Ψ
󰁈
= 〈f |f〉 , where f ≡

󰀓
Â− 〈A〉

󰀔
Ψ. (3.5)

Likewise, for any other observable B:

σ2
B = 〈g|g〉 , where g ≡

󰀓
B̂ − 〈B〉

󰀔
Ψ. (3.6)

Invoking the Schwarz inequality,

σ2
Aσ

2
B = 〈f |f〉 〈g|g〉 ≥ | 〈f |g〉 |2, (3.7)

Now, for any complex number z,

|z|2 = [Re(z)]2 + [Im(z)]2 ≥ [Im(z)]2 =

󰀗
1

2i
(z − z∗)

󰀘2
. (3.8)

Now, letting z = 〈f |g〉,

σ2
Aσ

2
B ≥

󰀕
1

2i
[〈f |g〉 − 〈g|f〉]

󰀖2

. (3.9)

Meanwhile, we can exploit the hermiticity of
󰀓
Â− 〈A〉

󰀔
from equation 3.5:

〈f |g〉 =
󰁇󰀓

Â− 〈A〉
󰀔
Ψ
󰀏󰀏󰀏
󰀓
B̂ − 〈B〉

󰀔
Ψ
󰁈

(3.10)

=
󰁇
Ψ
󰀏󰀏󰀏
󰀓
Â− 〈A〉

󰀔󰀓
B̂ − 〈B〉

󰀔
Ψ
󰁈

(3.11)

=
󰁇
Ψ
󰀏󰀏󰀏
󰀓
ÂB̂ − Â 〈B〉 − B̂ 〈A〉+ 〈A〉 〈B〉

󰀔
Ψ
󰁈

(3.12)

=
󰁇
Ψ
󰀏󰀏󰀏ÂB̂Ψ

󰁈
− 〈B〉

󰁇
Ψ
󰀏󰀏󰀏ÂΨ

󰁈
− 〈A〉

󰁇
Ψ
󰀏󰀏󰀏B̂Ψ

󰁈
+ 〈A〉 〈B〉 〈Ψ|Ψ〉 (3.13)

=
󰁇
ÂB̂

󰁈
− 〈A〉 〈B〉 (3.14)

Similarly,

〈g|f〉 =
󰁇
B̂Â

󰁈
− 〈A〉 〈B〉 (3.15)

so

〈f |g〉 − 〈g|f〉 = 〈[A,B]〉 (3.16)

and finally

σAσB ≥ 1

2i
〈[A,B]〉 . (3.17)

If we plug in our parameters for position and momentum,

σxσp ≥
1

2i
〈[x̂, p̂]〉 (3.18)

≥ 1

2i
〈i󰄁〉 (3.19)

≥ 󰄁
2

(3.20)

we get the original Heisenberg uncertainty principle. In fact, there is an uncertainty principle for every
pair of observables whose operators do not commute, these are incompatible observables. Incompatible
observables do not have shared eigenfunctions.

In the laboratory, the act of measuring a particle’s position collapses the wave function to a narrow
spike, which carries a broad range of wavelengths in its Fourier decomposition. If we now measure the
momentum, the state will collapse to a long sinusoidal wave and the particle no longer has position you got
in the first measurement. The problem is that the second measurement renders the outcome of the first
measurement obsolete. Only if the wave function were simultaneously an eigenstate of both observables
would it be possible to make the second measurement without disturbing the state of the particle. This
is only possible if the two observables are compatible.
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3.4.1 The Limit of Minimum Uncertainty

To have the minimum uncertainty, we require the generalised uncertainty principle to have equality:

σAσB =
1

2i
〈[A,B]〉 . (3.21)

The Schwarz inequality becomes equality when one function is a multiple of the other: g(x) = cf(x),
for some complex number c. The inequality in equation 3.8 become equality when Re(z) = 0, that is,
Re(〈f |g〉) = Re(c 〈f |g〉) = 0. We know 〈f |f〉 is real, is this means c must be purely imaginary. Using
c = ia, we get

g(x) = iaf(x). (3.22)

For the position-momentum uncertainty this becomes:

󰀕
−i󰄁

d

dx
− 〈p〉

󰀖
Ψ = ia(x− 〈x〉)Ψ (3.23)

which is a differential equation with the general solution:

Ψ(x) = Ae−a(x−〈x〉)2/2󰄁ei〈p〉x/󰄁. (3.24)

Evidently, the minimum-uncertainty wave packet is a gaussian. This means that since the ground state
of the harmonic oscillator and free particle are gaussians, they are the wave functions of minimum uncer-
tainty.

3.4.2 Energy-Time Uncertainty Principle

Since time is a parameter and not a observable, we can’t use the generalised uncertainty principle. As
a measure of how fast a system is changing, we compute the time derivative of the expectation value of
some observable, Q(x, p, t):

d

dt
〈Q〉 = d

dt

󰁇
Ψ
󰀏󰀏󰀏Q̂Ψ

󰁈
=

󰀟
dΨ

dt

󰀏󰀏󰀏󰀏Q̂Ψ

󰀠
+

󰀭
Ψ

󰀏󰀏󰀏󰀏󰀏
∂Q̂

∂t
Ψ

󰀮
+

󰀟
Ψ

󰀏󰀏󰀏󰀏Q̂
dΨ

dt

󰀠
. (3.25)

Now, from the Schrödinger equation,

i󰄁
dΨ

dt
= ĤΨ (3.26)

we get

d

dt
〈Q〉 = − 1

i󰄁

󰁇
ĤΨ

󰀏󰀏󰀏Q̂Ψ
󰁈
+

󰀭
∂Q̂

∂t

󰀮
+

1

i󰄁

󰁇
Ψ
󰀏󰀏󰀏Q̂ĤΨ

󰁈
(3.27)

= − 1

i󰄁

󰁇
Ψ
󰀏󰀏󰀏ĤQ̂Ψ

󰁈
+

󰀭
∂Q̂

∂t

󰀮
+

1

i󰄁

󰁇
Ψ
󰀏󰀏󰀏Q̂ĤΨ

󰁈
since Ĥ is hermitian (3.28)

=
i

󰄁

󰁇󰁫
Ĥ, Q̂

󰁬󰁈
+

󰀭
∂Q̂

∂t

󰀮
(3.29)

This is called the generalised Ehrenfest theorem. In the case where the operator does not depend ex-

plicitly on time
󰀓
∂Q̂
∂t = 0

󰀔
, it tells us that the rate of change of the expectation value is determined by

the commutator of the operator with the Hamiltonian. In particular, if Q̂ commutes with Ĥ, the 〈Q〉 is
constant, and therefore Q is a conserved quantity.

From the generalised uncertainty principle,

σ2
Hσ2

Q ≥
󰀕

1

2i

󰁇󰁫
Ĥ, Q̂

󰁬󰁈󰀖2

=

󰀕
1

2i

󰄁
i

d 〈Q〉
dt

󰀖2

from the Ehrenfest theorem (3.30)

σHσQ ≥ 󰄁
2

󰀏󰀏󰀏󰀏
d 〈Q〉
dt

󰀏󰀏󰀏󰀏. (3.31)

If we define ∆E ≡ σH and ∆t ≡ σQ󰀏󰀏󰀏d〈Q〉
dt

󰀏󰀏󰀏
, we get ∆E∆t ≥ 󰄁

2 .

Since σQ =
󰀏󰀏󰀏d〈Q〉

dt

󰀏󰀏󰀏∆t, we can see that ∆t is the amount of time it takes the expectation value of Q to

change by one standard deviation. If E is known precisely, then the rate of change of the observable must
be very gradual and vice versa.
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To get an intuitive understanding of this, lets consider the initial state of our system is an eigenstate
of our hamiltonian:

|Ψ(t0)〉 = |un〉 =⇒ ∆E = 0, since we only have a single eigenvalue E for that state. (3.32)

From the Schrödinger equation, the wave function at a later time t is given by

|Ψ(t)〉 = e−iEn(t−t0)󰄁 |un〉 = e−iEn(t−t0)󰄁 |Ψ(t0)〉 . (3.33)

For the observable Q:

〈Q̂〉 (t) =
󰁇
Ψ(t)

󰀏󰀏󰀏Q̂
󰀏󰀏󰀏Ψ(t)

󰁈
(3.34)

=
󰁇
Ψ(t0)

󰀏󰀏󰀏eiEn(t−t0)/󰄁Q̂e−iEn(t−t0)/󰄁
󰀏󰀏󰀏Ψ(t0)

󰁈
(3.35)

=
󰁇
Ψ(t0)

󰀏󰀏󰀏Q̂
󰀏󰀏󰀏Ψ(t0)

󰁈
(3.36)

= 〈Q̂〉 (t0) (3.37)

=⇒ d 〈Q̂〉
dt

= 0 (3.38)

Now from the definition of ∆t, we have:

∆t =
∆Q̂󰀏󰀏󰀏d〈Q̂〉
dt

󰀏󰀏󰀏
−→ ∞ (3.39)

which makes sense because the time taken to change state is infinite for a stationary state that is inde-
pendent of time.

The implications of this is that particles with a very short lifespan doesn’t have a well defined mass.
If we attempt to measure the mass repeatedly, we get a bell shaped curve with a large uncertainty.
A common misconception is that if the energy is uncertain by ∆E, then conservation of energy can be
violated by ∆E for a time ∆t. However, this is not the case because the uncertainty relation deals with
the precision of our measurements, not the actual values themselves.
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4 Quantum Mechanics in Three Dimensions

4.1 Spherical Harmonics

This section aims to investigate the physics behind the shape of atoms and their properties. Note that in
spherical coordinates, the expectation value takes the form:

〈Q〉 =
󰁝

ψ∗Qψ d3r where d3r = r3 sin θ dφ dθ dr . (4.1)

4.1.1 Spherical Coordinates

The Schrödinger equation in cartesian coordinates takes the form

i󰄁
dΨ

dt
= − 󰄁2

2m
∇2Ψ+ VΨ (4.2)

and the time-independent Schrödinger takes the form

− 󰄁2

2m
∇2ψ + V ψ = Eψ. (4.3)

To convert to spherical coordinates, we simply convert the laplacian

− 󰄁2

2m

󰀗
1

r2
∂

∂r

󰀕
r2

∂ψ

∂r

󰀖
+

1

r2 sin θ

∂

∂θ

󰀕
sin θ

∂ψ

∂θ

󰀖
+

1

r2 sin2 θ

󰀕
∂2ψ

∂φ2

󰀖󰀘
+ V ψ = Eψ. (4.4)

Figure 3: Spherical coordinates: radius r, polar angle θ, and azimuthal angle φ.

We begin by looking for solutions that are separable into products

ψ(r, θ,φ) = R(r)Y (θ,φ). (4.5)

Substituting this into equation 4.4, dividing by Y R and multiplying by −2mr2/󰄁2:
󰀝
1

R

d

dr

󰀕
r2

dR

dr

󰀖
− 2mr2

󰄁2
[V (r)− E]

󰀞
+

1

Y

󰀝
1

sin θ

∂

∂θ

󰀕
sin θ

∂Y

∂θ

󰀖
+

1

sin2 θ

∂2Y

∂φ2

󰀞
= 0. (4.6)

Since the first term depends only on r, and the second depends only on the angles, they both must be
opposite constants. We write the constants as

󰀝
1

R

d

dr

󰀕
r2

dR

dr

󰀖
− 2mr2

󰄁2
[V (r)− E]

󰀞
= l(l + 1); (4.7)

1

Y

󰀝
1

sin θ

∂

∂θ

󰀕
sin θ

∂Y

∂θ

󰀖
+

1

sin2 θ

∂2Y

∂φ2

󰀞
= −l(l + 1). (4.8)
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4.1.2 The Angular Equation

Multiplying equation 4.8 by Y sin2 θ gets us

sin θ
∂

∂θ

󰀕
sin θ

∂Y

∂θ

󰀖
+

∂2Y

∂φ2
= −l(l + 1)Y sin2 θ. (4.9)

Using separation of variables, we substitute

Y (θ,φ) = Θ(θ)Φ(φ) (4.10)

into equation 4.9 to get

󰀝
1

Θ

󰀗
sin θ

d

dθ

󰀕
sin θ

dΘ

dθ

󰀖󰀘
+ l(l + 1) sin2 θ

󰀞
+

1

Φ

d2Φ

dφ2
= 0. (4.11)

Again, we notice that the first and second terms must be constant, lets call this m2:

1

Θ

󰀗
sin θ

d

dθ

󰀕
sin θ

dΘ

dθ

󰀖󰀘
+ l(l + 1) sin2 θ = m2 (4.12)

1

Φ

d2Φ

dφ2
= −m2. (4.13)

The solution to equation 4.13 is simply Φ(φ) = eimφ, the term with the negative exponent is covered by
allowing m to be both positive and negative. We have also absorbed the constant A into Φ. Now, by the
periodicity of the Φ, we have

Φ(φ+ 2π) = Φ(φ). (4.14)

In other words, eim(φ+2π) = eimφ =⇒ e2πim = 1, so m ∈ Z.

Meanwhile, the solution to equation 4.12 is

Θ(θ) = APm
l (cos θ) (4.15)

where Pm
l is the associated Legendre function, defined by

Pm
l (x) ≡ (−1)m

󰀃
1− x2

󰀄m/2
󰀕

d

dx

󰀖m

Pl(x). (4.16)

and Pl(x) is the lth Legendre polynomial, defined by the Rodrigues formula:

Pl(x) ≡
1

2ll!

󰀕
d

dx

󰀖l󰀃
x2 − 1

󰀄l
. (4.17)

Figure 4: Legendre polynomials and functions

Note l must be a non-negative integer for the derivative and factorial in equation 4.17 to make sense.
Moreover, if m > l, then equation 4.16 says that Pm

l = 0. So for any given l, there are (2l + 1) possible
values for m:

l = 0, 1, 2, ...; m = −l, −l + 1, ...,−1, 0, 1, ..., l − 1, l. (4.18)

16



Now, the normalisation condition is

󰁝
|ψ|2r2 sin θ dr dθ dφ =

󰁝
|R|2r2 dr

󰁝
|Y |2 dΩ = 1. (4.19)

It is convenient to normalise separately

󰁝 ∞

0
|R|2r2 dr = 1 and

󰁝 π

0

󰁝 2π

0
|Y |2 sin θ dθ dφ = 1. (4.20)

Now if we normalise the angular wave function Y (θ,φ) = Θ(θ)Φ(φ) = APm
l (cos θ)Φ(φ), we obtain the

spherical harmonics:

Y m
l (θ,φ) =

󰁶
(2l + 1)

4π

(l −m)!

(l +m)!
eimφPm

l (cos θ) . (4.21)

Figure 5: The first few spherical harmonics

4.1.3 The Radial Equation

The angular part of the wave function, Y (θ,φ), is the same for all spherically symmetric potentials since
it doesn’t depend on V (r). The potential only affects the radial part of the wave function, R(r), which is
given by equation 4.7:

d

dr

󰀕
r2

dR

dr

󰀖
− 2mr2

󰄁2
[V (r)− E] = l(l + 1)R. (4.22)

This simplifies if we change variables to

u(r) ≡ rR(r), (4.23)

so that

− 󰄁2

2m

d2u

dr2
+

󰀗
V +

󰄁2

2m

l(l + 1)

r2

󰀘
u = Eu . (4.24)

This is called the radial equation; it is identical in form to the one-dimensional Schrödinger equation,
except that the effective potential,

Veff = V +
󰄁2

2m

l(l + 1)

r2
, (4.25)

contains the extra centrifugal term. It tends to through the particle outward (away from the origin).
Meanwhile, the normalisation condition becomes

󰁝 ∞

0
|u|2 dr = 1. (4.26)

That’s as far as we can go until a specific potential V (r) is provided.
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4.2 The Hydrogen Atom

The potential energy of the electron can be obtained from Coulomb’s Law:

V (r) = − e2

4π󰂃0

1

r
(4.27)

and the radial equation 4.24 says

− 󰄁2

2m

d2u

dr2
+

󰀗
− e2

4π󰂃0

1

r
+

󰄁2

2m

l(l + 1)

r2

󰀘
u = Eu. (4.28)

Since Vcentrifugal is proportional to 1/r2 and VCoulomb is proportional to 1/r, for r → 0, the Vcentrifugal

dominates the total potential and when r → ∞, the VCoulomb dominates the total potential.

Figure 6: The effective potential for hydrogen if l > 0

4.2.1 The Radial Wave Equation

Lets tidy up the notation. Let

κ ≡
√
−2meE

󰄁
. (4.29)

For bound states, E < 0 so κ is real. Dividing equation 4.28 by E, we have

1

κ2
d2u

dr2
=

󰀗
1− mee

2

2π󰂃0󰄁2κ
1

(κr)
+

l(l + 1)

(κr)2

󰀘
u. (4.30)

This motivates the introduction of

ρ ≡ κr, and ρ0 ≡
mee

2

2π󰂃0󰄁2κ
. (4.31)

so that

d2u

dρ2
=

󰀗
1− ρ0

ρ
+

l(l + 1)

ρ2

󰀘
u. (4.32)

next, we examine the asymptotic form of the solutions. As ρ → ∞, the constant term in the brackets
dominates so

d2u

dρ2
= u. (4.33)

The general solution for large ρ is

u(ρ) ≈ Ae−ρ, (4.34)

after removing the term that explodes.
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On the other hand, as ρ → 0 the centrifugal term dominates; then:

d2u

dρ2
=

l(l + 1)

ρ2
u. (4.35)

The general solution for small ρ is therefore

u(ρ) ≈ Cρl+1 (4.36)

after removing the term that explodes. The next step is to peel off the asymptotic behaviour, introducing
a new function v(ρ): u(ρ) = ρl+1e−ρv(ρ) in the hopes that v(ρ) will turn out to be simpler than u(ρ).
Differentiating repeatedly gives us

du

dρ
= ρle−ρ

󰀗
(l + 1− ρ)v + ρ

dv

dρ

󰀘
, (4.37)

and

d2u

dρ2
= ρle−ρ

󰀝󰀗
−2l + 2 + ρ+

l(l + 1)

ρ

󰀘
v + 2(l + 1− ρ)

dv

dρ
+ ρ

d2v

dρ2

󰀞
. (4.38)

Substituting these new expressions with v(ρ) into equation 4.32 gives us

ρ
d2v

dρ2
+ 2(l + 1− ρ)

dv

dρ
+ [ρ0 − 2(l + 1)]v = 0. (4.39)

Finally, we assume the solution v(ρ), can be expressed as a power series in ρ:

v(ρ) =

∞󰁛

j=0

cjρ
j . (4.40)

The goal is to determine the coefficients. Differentiating term by term:

dv

dρ
=

∞󰁛

j=0

jcjρ
j−1 =

∞󰁛

j=0

(j + 1)cj+1ρ
j . (4.41)

Differentiating again,

d2v

dρ2
=

∞󰁛

j=0

j(j + 1)cj+1ρ
j−1. (4.42)

Inserting these into equation 4.39,

∞󰁛

j=0

j(j + 1)cj+1ρ
j + 2(l + 1)

∞󰁛

j=0

j(j + 1)cj+1ρ
j − 2

∞󰁛

j=0

jcjρ
j + [ρ0 − 2(l + 1)]

∞󰁛

j=0

cjρ
j = 0 (4.43)

Since these terms all have ρj , we can equate coefficients

j(j + 1)cj+1 + 2(l + 1)(j + 1)cj+1 − 2jcj + [ρ0 − 2(l + 1)]cj , (4.44)

or:

cj+1 =

󰀝
2(j + l + 1)− ρ0
(j + 1)(j + 2l + 2)

󰀞
cj . (4.45)

This recursion formula determines the coefficients. We start with c0 since it is eventually determined by
normalisation

cj+1 ≈
2j

j(j + 1)
cj (4.46)

≈ 2

j + 1
cj (4.47)

so

cj ≈
2j

j!
c0. (4.48)
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Suppose for a moment this was the exact result. Then

v(ρ) = c0

∞󰁛

j=0

1

j!
(2ρ)j = c0e

2ρ. (4.49)

and hence

u(ρ) = c0ρ
l+1eρ, (4.50)

which explodes at large ρ. This solution to the radial equation is not normalisable. There is only one
escape from this dilemma: The series must terminate. There must occur some integer N such that
cN−1 ∕= 0 but cN = 0. In that case, equation 4.45 says that

2(N + l)− ρ0 = 0. (4.51)

Defining n ≡ N + l, we have

ρ0 = 2n. (4.52)

But ρ0 determines E (equations 4.29) and 4.31):

E = −󰄁2κ2

2m
=

mee
4

8π2󰂃20󰄁2ρ20
, (4.53)

so the allowed energies are

En = −
󰀥
me

2󰄁2

󰀕
e2

4π󰂃0

󰀖2
󰀦
1

n2
=

E1

n2
, n = 1, 2, 3, ... (4.54)

This is the famous Bohr formula - the most important result in all of quantum mechanics. From equation
4.31, we find that

κ =

󰀕
mee

2

4π󰂃0󰄁2

󰀖
1

n
=

1

an
, (4.55)

where

a ≡ 4π󰂃0󰄁2

mee2
= 0.529× 10−10 m (4.56)

is the Bohr radius. The spatial wave functions are labeled by three quantum numbers (n, l, and m):

ψnlm(r, θ,φ) = Rnl(r)Y
m
l (θ,φ), (4.57)

where (referring back to equations 4.50 and 4.23),

Rnl(r) =
1

r
ρl+1e−ρv(ρ). (4.58)

and v(ρ) is a polynomial of degree n− l− 1 in ρ, whose coefficients are determined (up to a normalisation
factor) by the recursion formula:

cj+1 =
2(j + l + 1− n)

(j + 1)(j + 2l + 2)
cj . (4.59)

Thee ground state is the case n = 1 putting in the accepted values for the physical constants, we get:

E1 = −
󰀥
me

2󰄁2

󰀕
e2

4π󰂃0

󰀖2
󰀦
= −13.6eV. (4.60)

The binding energy of hydrogen (the amount of energy you would have to impart to the electron in ground
state in order to ionise the atom) is 13.6 eV.
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Lets now find

ψ100(r, θ,φ) = R10(r)Y
0
0 (θ,φ). (4.61)

The recursion formula truncades after the first term so v(ρ) is a constant (c0), and

R10(r) =
c0
a
e−r/a. (4.62)

and after normalisation and the computation of Y 0
0 , the ground state of hydrogen is

ψ100(r, θ,φ) =
1√
πa3

e−r/a and En = −13.6eV

n2
(4.63)

For arbitrary n, the possible values of l can be found using n = N + l and adjusting N :

l = 0, 1, 2, ..., n− 1, (4.64)

and for each l there are (2l + 1) possible values for m, so the total degeneracy of the energy level En is

d(n) =

n−1󰁛

l=0

(2l + 1) = n2. (4.65)

The polynomial v(ρ) can be written as

Figure 7: Energy levels for hydrogen

v(ρ) = L2l+1
n−l−1(2ρ), (4.66)

where

Lp
q(x) ≡ (−1)p

󰀕
d

dx

󰀖p

Lp+q(x) (4.67)

is an associated Laguerre polynomial, and

Lq(x) ≡
ex

q!

󰀕
d

dx

󰀖2󰀃
e−xxq

󰀄
(4.68)

is the qth Laguerre polynomial. The normalised hydrogen wave functions are

ψnlm =

󰁶󰀕
2

na

󰀖3 (n− l − 1)!

2n(n+ l)!
e−r/na

󰀕
2r

na

󰀖l󰀗
L2l+1
n−l−1

󰀕
2r

na

󰀖󰀘
Y m
l (θ,φ). (4.69)
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4.2.2 The Hydrogen Spectrum

If the hydrogen atom is perturbed by processes such as the collision with another atom or by shining light
on it, the atom may undergo a transition to some other stationary state - either by absorbing energy,
and moving up to a higher energy state, or by giving off energy typically in the form of electromagnetic
radiation. The emitted photon’s energy corresponds to the difference in energy between the initial and
final states:

Eγ = Ei − Ef = −13.6eV

󰀣
1

n2
i

− 1

n2
f

󰀤
. (4.70)

Now from the Planck formula, Eγ = hν, so

1

λ
=

ν

c
=

Eγ

hc
=

−13.6eV

hc

󰀣
1

n2
f

− 1

n2
i

󰀤
= R

󰀣
1

n2
f

− 1

n2
i

󰀤
(4.71)

where R = 1.097 × 107m−1 is known as the Rydberg constant. At room temperature, most hydrogen
atoms are in the ground state; to obtain the emission spectrum you must first populate the various excited
states; typically this is done by passing an electric spark through the gas.

Figure 8: Energy Levels and transitions in the hydrogen spectrum
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4.3 Angular Momentum

Classically, the angular momentum of a particle is given by the formula

L = r× p, (4.72)

which is to say,

Lx = ypz − zpy, Ly = zpx − xpz, Lz = xpy − ypx. (4.73)

To transition to quantum mechanics, we simply replace the classical momenta with their operator form.

4.3.1 Eigenvalues

Let us start by noting down important commutation relations:

[ri, pj ] = i󰄁δij , [ri, rj ] = [pi, pj ] = 0. (4.74)

Now, we begin by calculating the commutators:

[Lx, Ly] = [ypz − zpy, zpx − xpz] (4.75)

= [ypz, zpx]− [ypz, xpz]− [zpy, zpx] + [zpy, xpz] (4.76)

= ypx[pz, z] + pyx[z, pz] (4.77)

= i󰄁(xpy − ypz) (4.78)

= i󰄁Lz (4.79)

So we have the commutators

[Lx, Ly] = i󰄁Lz; [Ly, Lz] = i󰄁Lx; [Lz, Lx] = i󰄁Ly (4.80)

which are incompatible observables. It would be futile to look for states that are simultaneously eigen-
functions of Lx and Ly. On the other hand, the square of the total angular momentum

L2 ≡ L2
x + L2

y + L2
z, (4.81)

does commute with Lx:

󰀅
L2, Lx

󰀆
=

󰀅
L2
x, Lx

󰀆
+
󰀅
L2
y, Lx

󰀆
+

󰀅
L2
z, Lx

󰀆
(4.82)

= Ly[Ly, Lx] + [Ly, Lx]Ly + Lz[Lz, Lx] + [Lz, Lx]Lz (4.83)

= Ly(−i󰄁Lz) + (−i󰄁Lz)Ly + Lz(i󰄁Ly) + (i󰄁Ly)Lz (4.84)

= 0. (4.85)

So L2 also commutes with Ly and Lz:

󰀅
L2, Lx

󰀆
= 0,

󰀅
L2, Ly

󰀆
= 0,

󰀅
L2, Lz

󰀆
= 0. (4.86)

or, more compactly,

󰀅
L2,L

󰀆
= 0. (4.87)

Since L2 is compatible with each component of L, we can find simultaneous eigenstates of L2 and Lz:

L2f = λf and Lzf = µf. (4.88)

Using the ladder operator technique, let

L± ≡ Lx ± iLy. (4.89)

The commutator with Lz is

[Lz, L±] = [Lz, Lx]± i[Lz, Ly] = i󰄁Ly ± i(−i󰄁Lx) = 󰄁(±Lx + iLy) = ±󰄁(Lx ± iLy), (4.90)

so

[Lz, L±] = ±󰄁L±, (4.91)

and it follows that

󰀅
L2, L±

󰀆
= 0. (4.92)
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If f is an eigenfunction of L2 and Lz, so also is L±f

L2(L±f) = L±(L
2f) = L±(λf) = λ(L±f) (4.93)

so L±f is an eigenfunction of L2, with the same eigenvalue λ,

Lz(L±f) = (LzL± − L±Lz)f + L±Lzf = ±󰄁L±f + L±(µf) = (µ± 󰄁)(L±f) (4.94)

so L±f is an eigenfunction of Lz with the new eigenvalue µ±󰄁. For a given value of λ, we obtain a ladder
of states, with each ”rung” separated from its neighbours by one unit of 󰄁 in the in the eigenvalue of
Lz. To ascend the ladder we apply the raising operator, and to descend, the lowering operator. However,
there must be a top rung ft such that L+ft = 0. Let 󰄁l be the eigenvalue of Lz at the top rung:

Lzft = 󰄁lft; L2ft = λft. (4.95)

Now,

L±L∓ = (Lx ± iLy)(Lx ∓ iLy) = L2
x + L2

y ∓ i(LxLy − LyLx) = L2 − L2
z ∓ i(i󰄁Lz), (4.96)

and rearranging,

L2 = L±L∓ + L2
z ∓ 󰄁Lz (4.97)

It follows that

L2ft = (L−L+ + L2
z + 󰄁Lz)ft = (0 + 󰄁2l2 + 󰄁2l)ft = 󰄁2l(l + 1)ft, (4.98)

and hence

λ = 󰄁2l(l + 1). (4.99)

This tells us the eigenvalue of L2 in terms of the maximum eigenvalue of Lz. Meanwhile, there is also a
bottom rung, fb, such that L−fb = 0. Let 󰄁l be the eigenvalue of Lz at this bottom rung:

Lzfb = 󰄁lfb; L2fb = λfb. (4.100)

Now, finding the eigenvalues for L2:

L2fb = (L+L− + L2
z − 󰄁Lz)fb = (0 + 󰄁2l − 󰄁2l)fb = 󰄁2l(l − 1)fb, (4.101)

and therefore

λ = 󰄁2l(l − 1). (4.102)

Since λ is the same for all lowered/raised states, we have l(l + 1) = l(l − 1) so either l = l + 1 (which is
incorrect because the bottom rung can’t be higher than the top rung) or else l = −l. So the eigenvalues
of Lz are m󰄁 where m goes from −l to +l, in N integer steps. In particular, it follows that l = −l +N ,
and hence l = N/2, so l must be an integer or half-integer. The eigenfunctions are therefore characterised
by the numbers l and m in the form:

L2fm
l = 󰄁2l(l + 1)fm

l ; Lzf
m
l = 󰄁mfm

l ; l = 0, 1/2, 1, 3/2 ...; m = −l, −l + 1, ..., l. (4.103)

Figure 9: Angular momentum states for l = 2
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4.3.2 Eigenfunctions

First of all we need to rewrite Lx, Ly, and Lz in spherical coordinates. Now, L = −i󰄁(r×∇), so:

L = −i󰄁
󰀗
r(r̂× r̂)

∂

∂r
+ (r̂× θ̂)

∂

∂θ
+ (r̂× φ̂)

1

sin θ

∂

∂φ

󰀘
. (4.104)

= −i󰄁
󰀕
φ̂
∂

∂θ
− θ̂

1

sin θ

∂

∂φ

󰀖
(4.105)

The unit vectors θ̂ and φ̂ can be resolved into their cartesian components:

θ̂ = (cos θ cosφ)̂i+ (cos θ sinφ)̂j− (sin θ)k̂ (4.106)

φ̂ = −(sinφ)̂i+ (cosφ)̂j. (4.107)

Thus

L̂ = −i󰄁
󰀗󰀓

− sin φ̂i+ cos φ̂j
󰀔 ∂

∂θ
−

󰀓
cos θ cos φ̂i+ cos θ sin φ̂j− sin θk̂

󰀔 1

sin θ

∂

∂φ

󰀘
. (4.108)

So

Lx = −i󰄁
󰀕
− sinφ

∂

∂θ
− cosφ cot θ

∂

∂φ

󰀖
, (4.109)

Ly = −i󰄁
󰀕
cosφ

∂

∂θ
− sinφ cot θ

∂

∂φ

󰀖
, (4.110)

Lz = −i󰄁
∂

∂φ
. (4.111)

We shall need the raising and lowering operators:

L± = Lx ± iLy = −i󰄁
󰀗
(− sinφ± i cosφ)

∂

∂θ
− (cosφ± i sinφ) cot θ

∂

∂φ

󰀘
. (4.112)

= ±󰄁e±iφ

󰀕
∂

∂θ
± i cot θ

∂

∂φ

󰀖
(4.113)

From this, we can derive

L+L− = −󰄁2
󰀕

∂2

∂θ2
+ cot θ

∂

∂θ
+ cot2 θ

∂2

∂φ2
+ i

∂

∂φ

󰀖
, (4.114)

and hence, from equation 4.97, we have

L2 = −󰄁2
󰀗

1

sin θ

∂

∂θ

󰀕
sin θ

∂

∂θ

󰀖
+

1

sin2 θ

∂2

∂φ2

󰀘
. (4.115)

We can now determine fm
l (θ,φ). It’s an eigenfunction of L2, with eigenvalue 󰄁2l(l + 1):

L2fm
l = −󰄁2

󰀗
1

sin θ

∂

∂θ

󰀕
sin θ

∂

∂θ

󰀖
+

1

sin2 θ

∂2

∂φ2

󰀘
fm
l = 󰄁2l(l + 1)fm

l . (4.116)

This is actually the angular equation 4.9. And it’s also an eigenfunction of Lz, with the eigenvalue m󰄁:

Lzf
m
l = −i󰄁

∂

∂φ
fm
l = 󰄁mfm

l , (4.117)

but this is equivalent to the azimuthal equation 4.13. Since we have both the solutions to the azimuthal
and angular equations, we know that the eigenfunctions of L2 and Lz are nothing but the old spherical
harmonics! Incidentally, we can use equation 4.115 to represent the spherical Schrödinger equation 4.4
more compactly as:

1

2mr2

󰀗
−󰄁2

∂

∂r

󰀕
r2

∂

∂r

󰀖
+ L2

󰀘
ψ + V ψ = Eψ. (4.118)

There is one final point worth mentioning, the algebraic method using raising/lowering operators permits l
and m to take on half -integer values (Equation 4.103), whereas the separation of variables method yielded
eigenfunctions only for integer values (Equation 4.18). It may seem like half integer angular momentum
is pointless but they have profound importance in the spin theory of quantum mechanics.
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4.4 Quantum Spin

Elementary particles carry intrinsic angular momentum called spin and extrinsic orbital angular momen-
tum. The algebraic theory of spin is identical to the theory of orbital angular momentum:

[Sx, Sy] = i󰄁Sz, [Sy, Sz] = i󰄁Sx, [Sz, Sx] = i󰄁Sy. (4.119)

It follows as before that the eigenvectors of S2 and Sz satisfy

S2 |s,m〉 = 󰄁2s(s+ 1) |s,m〉 ; Sz |s,m〉 = 󰄁m |s,m〉 ; (4.120)

and

S± |s,m〉 = 󰄁
󰁳

s(s+ 1)−m(m± 1) |s, (m± 1)〉 , (4.121)

where S± ≡ Sx ± iSy. Note that we have switched to Dirac notation since the eigenstates of spin are not
functions. But this time these eigenfunctions are not spherical harmonics since they’re not functions of θ
and φ at all., and there’s no reason to exclude the half-integer values of s and m:

s = 0,
1

2
, 1,

3

2
, ...; m = −s, −s+ 1, ..., s− 1, s. (4.122)

Every particle has a specific and unchangeable value of s. By contrast, the orbital angular momentum
quantum number l can take on any integer value, and will change from one to another when the system
is perturbed.

4.4.1 Spin 1/2

This is the most important case because particles that make up ordinary matter (protons, neutrons, and
electrons), as well as all quarks and all leptons. There are just two eigenstates: spin up, |↑〉 =

󰀏󰀏1
2 ,

1
2

󰀎
, and

spin down, |↓〉 =
󰀏󰀏1
2 ,−

1
2

󰀎
. Using these as basis vectors, the general spin state of a spin-1/2 particle can

be represented by a two-element column matrix called a spinor:

χ =

󰀕
a
b

󰀖
= aχ+ + bχ−, (4.123)

with χ+ =

󰀕
1
0

󰀖
representing spin up and χ− =

󰀕
0
1

󰀖
for spin down. With respect to this basis the spin

operators become 2× 2 matrices, which we can work out by noting their effect on χ+ and χ−:

S2χ+ =
3

4
󰄁2χ+ and S2χ− =

3

4
󰄁2χ−. (4.124)

If we write S2 as a matrix:

S2 =

󰀕
c d
e f

󰀖
, (4.125)

then Equation 4.124 says that

󰀕
c
e

󰀖
=

󰀕
3
4󰄁

2

0

󰀖
, (4.126)

󰀕
d
f

󰀖
=

󰀕
0

3
4󰄁

2

󰀖
, (4.127)

so

S2 =
3

4
󰄁2
󰀕
1 0
0 1

󰀖
. (4.128)

Meanwhile, from

Szχ+ =
󰄁
2
χ+, Szχ− = −󰄁

2
χ−, (4.129)

from which it follows that

Sz =
󰄁
2

󰀕
1 0
0 −1

󰀖
. (4.130)
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Meanwhile, from Equation 4.121, says

S+χ− = 󰄁χ+, S−χ+ = 󰄁χ−, S+χ+ = S−χ− = 0, (4.131)

so

S+ = 󰄁
󰀕
0 1
0 0

󰀖
, S− = 󰄁

󰀕
0 0
1 0

󰀖
. (4.132)

Now S± = Sx ± iSy, so Sx = (1/2)(S+ + S−) and Sy = (1/2i)(S+ − S−), and hence

Sx =
󰄁
2

󰀕
0 1
1 0

󰀖
, Sy =

󰄁
2

󰀕
0 −i
i 0

󰀖
. (4.133)

Now Sx, Sy, and Sz carry a factor of 󰄁/2, it is tidier to write S = (󰄁/2)σ, where

σx ≡
󰀕
0 1
1 0

󰀖
, σy ≡

󰀕
0 −i
i 0

󰀖
, σz ≡

󰀕
1 0
0 −1

󰀖
. (4.134)

These are the Pauli spin matrices. Note that Sx, Sy, Sz, and S2 are all hermitian matrices since the
represent observables whereas S± are not - evidently they are not observable.

If you measure Sz on a particle in the general state χ, according to Equation 4.129, you could get +󰄁/2
with probability |a|2, or −󰄁/2 with probability |b|2, where |a|2 + |b|2 = 1 (spinor must be normalised).
What if instead, you chose to measure Sx? Lets work out the eigenvalues and eigenspinors of Sx:

󰀏󰀏󰀏󰀏
−λ 󰄁/2
󰄁/2 −λ

󰀏󰀏󰀏󰀏 = 0 =⇒ λ = ±󰄁
2
. (4.135)

Now finding the eigenspinors:

±󰄁
2

󰀕
0 1
1 0

󰀖󰀕
α
β

󰀖
= ±󰄁

2

󰀕
α
β

󰀖
=⇒

󰀕
β
α

󰀖
= ±

󰀕
α
β

󰀖
, (4.136)

so β = ±α. Evidently the normalised eigenspinors of Sx are

χ
(x)
+ =

1√
2

󰀕
1
1

󰀖
,

󰀕
eigenvalue : +

󰄁
2

󰀖
; χ

(x)
− =

1√
2

󰀕
1
−1

󰀖
,

󰀕
eigenvalue : −󰄁

2

󰀖
. (4.137)

As the eigenspinors of a hermitian matrix, they span the space; the generic spinor χ can be expressed as
a linear combination of them:

χ =

󰀕
a+ b√

2

󰀖
χ
(x)
+ +

󰀕
a− b√

2

󰀖
χ
(x)
− . (4.138)

If you measure Sx, the probability of getting +󰄁/2 is 1/2|a+ b|2, and the probability of getting −󰄁/2 is
1/2|a− b|2.

Now we want to construct a matrix Sr, representing the component of spin along an arbitrary direc-
tion r̂. In spherical coordinates:

Sr = S · r̂ = Sx sin θ cosφ+ Sy sin θ sinφ+ Sz cos θ (4.139)

=
󰄁
2

󰀕
cos θ e−iφ sin θ

eiφ sin θ − cos θ

󰀖
(4.140)

The eigenvalues and eigenspinors to this matrix are:

χ
(r)
+ =

󰀕
cos θ

2

eiφ sin θ
2

󰀖
,

󰀕
eigenvalue : +

󰄁
2

󰀖
; χ

(r)
− =

󰀕
e−iφ sin θ

2

− cos θ
2

󰀖
,

󰀕
eigenvalue : −󰄁

2

󰀖
. (4.141)

Note χ
(z)
+ =

󰀕
1
0

󰀖
, so

P
(z)
+ = |c(z)+ |2 =

󰀏󰀏󰀏󰀏
󰀃
1 0

󰀄󰀕 cos θ
2

eiφ sin θ
2

󰀖󰀏󰀏󰀏󰀏
2

= cos2
θ

2
. (4.142)
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4.4.2 Electron in a Magnetic Field

A spinning charged particle constitutes a magnetic dipole which is proportional to its spin, µ = γS. The
proportionality constant, γ, is called the gyromagnetic ratio. When a magnetic dipole is placed within
a magnetic field B, it experiences a torque, µ × B, which tends to line it up parallel to the field. The
energy associated with this torque is:

H = −µ ·B, (4.143)

so the Hamiltonian matrix for a spinning charged particle

H = −γB · S. (4.144)

4.4.3 Larmor Precession

Imagine a spin-1/2 particle at rest in a uniform magnetic field, which points in the z-direction, B = B0k̂:

H = −γB0Sz = −γB0󰄁
2

󰀕
1 0
0 −1

󰀖
. (4.145)

The eigenstates of H are the same as those of Sz:

χ+, with energy E+ = −(γB0󰄁)/2, (4.146)

χ−, with energy E− = +(γB0󰄁)/2. (4.147)

Note that we have defined zero potential energy when the dipole is perpendicular to the magnetic field.
Now since the Hamiltonian is time independent, the general solution to the time-dependent Schrödinger
equation,

i󰄁
∂χ

∂t
= Hχ, (4.148)

can be expressed in terms of the stationary states:

χ(t) = aχ+e
−iE+t/󰄁 + bχ−e

−iE−t/󰄁 =

󰀕
aeiγB0t/2

be−iγB0t/2

󰀖
. (4.149)

The constants a and b are determined by the initial condition: χ(0) =

󰀕
a
b

󰀖
.

Lets write a = cos(α/2) and b = sin(α/2). Thus

χ(t) =

󰀕
cos(α/2)eiγB0t/2

sin(α/2)e−iγB0t/2

󰀖
. (4.150)

To get a feel for what is happening, lets calculate the expectation value of S = χ(t)†Sχ(t):

〈Sx〉 =
󰄁
2
sinα cos(γB0t), (4.151)

〈Sy〉 = −󰄁
2
sinα sin(γB0t), (4.152)

〈Sz〉 =
󰄁
2
cosα. (4.153)

Thus 〈S〉 is tilted at a constant angle α to the z-axis, and precesses about the field at the Larmor frequency
ω = γB0, just as it would classically (as we expect since expectation values behave classically).

Figure 10: Precession of 〈S〉 in a uniform magnetic field.
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4.4.4 The Stern-Gerlach Experiment

In an inhomogeneous magnetic field, there is not only a torque, but also a force, on a magnetic dipole:

F = ∇(µ ·B). (4.154)

This force can be used to separate out particles with a particular spin orientation. We will use a beam
of heavy neutral silver atoms: neutral to avoid the Lorentz force and heavy to construct localised wave
packets and treat them as classical. The silver atoms are travelling in the y-direction, which passes
through a region of static but inhomogeneous magnetic field - say

B(x, y, z) = −αx̂i+ (B0 + αz)k̂, (4.155)

where B0 is a strong uniform field and α describes a small deviation from homogeneity. We actually prefer
just the z-component of this field but ∇ ·B = 0 prevents us from doing so. The force on the atoms is:

F = γα(−Sx̂i+ Szk̂). (4.156)

But because the Larmor precession about B0, Sx oscillates rapidly, and averages to zero; the net force is
in the z-direction:

Fz = γαSz, (4.157)

and the beam is deflected up or down. Classically we’d expect a smear because Sz would not be quantised,
but in fact the beam splits intom = 2s+1 = 2 seperate streams, demonstrating the quantisation of angular
momentum. The inner electrons of the silver atom are paired, in such way that their angular momenta
cancel. The net spin is simply that of the outermost - unpaired - electron.

Figure 11: The Stern-Gerlach apparatus

Note that due to the atomic beam being wider than the magnetic field, an elongated shape is produced.
If you want to prepare a beam of atoms in a given spin configuration, you pass an unpolarised beam
through a Stern-Gerlach magnet, and select the outgoing stream you are interested in. Conversely if you
measure the z-component of an atom’s spin, you send it through a Stern-Gerlach apparatus, and record
which bin it lands in.
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4.4.5 Addition of Angular Momenta

Suppose now that we have two particles, with spins s1 and s2. Say, the first is in the state |s1,m1〉 and
the second in the state |s2,m2〉. We denote the composite state by |s1, s2,m1,m2〉:

S2(1) |s1, s2,m1,m2〉 = s1(s1 + 1)󰄁2 |s1, s2,m1,m2〉 , (4.158)

S2(2) |s1, s2,m1,m2〉 = s2(s2 + 1)󰄁2 |s1, s2,m1,m2〉 (4.159)

S(1)
z |s1, s2,m1,m2〉 = m1󰄁 |s1, s2,m1,m2〉 (4.160)

S(2)
z |s1, s2,m1,m2〉 = m2󰄁 |s1, s2,m1,m2〉 . (4.161)

We need to now find the total angular momentum S = S(1) +S(2), of this system. I.e. the net spin of the
combination, s, and the z-component m. The z-component is easy:

Sz |s1, s2,m1,m2〉 = S(1)
z |s1, s2,m1,m2〉+ S(2)

z |s1, s2,m1,m2〉 (4.162)

= 󰄁(m1 +m2) |s1, s2,m1,m2〉 (4.163)

= 󰄁m |s1, s2,m1,m2〉 , where m = m1 +m2 (4.164)

But s is much more subtle, consider the case of two spin-1/2 particles - say, the electron and the proton
in the ground state of hydrogen. Each can have spin up or spin down, so there are four possibilities:

|↑↑〉 =
󰀏󰀏󰀏󰀏
1

2
,
1

2
,
1

2
,
1

2

󰀠
, m = 1 (4.165)

|↑↓〉 =
󰀏󰀏󰀏󰀏
1

2
,
1

2
,
1

2
,−1

2

󰀠
, m = 0 (4.166)

|↓↑〉 =
󰀏󰀏󰀏󰀏
1

2
,
1

2
,−1

2
,
1

2

󰀠
, m = 0 (4.167)

|↓↓〉 =
󰀏󰀏󰀏󰀏
1

2
,
1

2
,−1

2
,−1

2

󰀠
, m = −1 (4.168)

However, this doesn’t look right: m is supposed to advance in integer steps, from −s to s, but there is an

extra state with m = 0. To untangle this problem, we can apply the lowering operator, S− = S
(1)
− + S

(2)
−

to the state |↑↑〉 using Equation 4.132:

S− |↑↑〉 =
󰀓
S
(1)
− |↑〉

󰀔
|↑〉+ |↑〉

󰀓
S
(2)
− |↑〉

󰀔
(4.169)

= (󰄁 |↓〉) |↑〉+ |↑〉 (󰄁 |↓〉) = 󰄁(|↓↑〉+ |↑↓〉) (4.170)

Evidently, the three states with s = 1 (in the notation |s,m〉) are:

s = 1 (triplet)

󰀻
󰁁󰀿

󰁁󰀽

|1, 1〉 = |↑↑〉
|1, 0〉 = 1√

2
(|↑↓〉+ |↓↑〉)

|1,−1〉 = |↓↓〉
(4.171)

Meanwhile, the orthogonal state with m = 0 carries s = 0:

s = 0 (singlet)
󰁱
|0, 0〉 = 1√

2
(|↑↓〉 − |↓↑〉) (4.172)

The combination of two spin-1/2 particles can carry a total spin of 1 or 0, depending on whether they
occupy the triplet or the singlet configuration. It can be shown that triplet states are eigenvectors of S2

with eigenvalue 2󰄁2, and the singlet is an eigenvector of S2 with an eigenvalue of 0.

If you combine spins s1 and s2, is that you get every spin from (s1 + s2) down to |(s1 − s2)| in inte-
ger steps:

s = (s1 + s2), (s1 + s2 − 1), (s1 + s2 − 2), ..., |s1 − s2|. (4.173)

The highest spin occurs when the individual spins are parallel to each other, and the lowest occurs when
they are antiparallel. For example, if you package together a particle with spin-3/2 with a particle of
spin-2, you could get a total spin of 7/2, 5/2, 3/2 or 1/2, depending on the configurations. Another
example: If a hydrogen atom is in the state ψnlm, the net angular momentum of the electron (spin plus
orbital) is l+1/2 or l− 1/2; if you now throw in spin of the proton, the atom’s total angular momentum
quantum number is l + 1, l, or l − 1 where l can be achieved in two distinct ways.
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The combined state |s,m〉 will be some linear combination of the composite states |s1, s2,m1,m2〉:

|s,m〉 =
󰁛

m1+m2=m

Cs1,s2,s
m1,m2,m |s1, s2,m1,m2〉 . (4.174)

Since z-components add, the only states that contribute are those for which m1+m2 = m. The constants
Cs1,s2,s
m1,m2,m are called Clebsch-Gordan coefficients.

Figure 12: Clebsch-Gordan coefficients

A square root sign is implied for every entry and a minus sign, if present, goes outside the radical. For
example, the 2× 1 table tells us that

|3, 0〉 = 1√
5
|2, 1〉 |1,−1〉+

󰁵
3

5
|2, 0〉 |1, 0〉+ 1√

5
|2,−1〉 |1, 1〉 . (4.175)

=
1√
5
|2, 1, 1,−1〉+

󰁵
3

5
|2, 1, 0, 0〉+ 1√

5
|2, 1,−1, 1〉 (4.176)

This says that if two particles of spin-2 and spin-1 are at rest in a box, and the total spin component is

3, and total z-component is 0, then from Equation 4.120, a measurement of S
(1)
z could return the value

of 󰄁 (with probability 1/5), or 0 (with probability 3/5), or −󰄁 (with probability 1/5). These tables work
the other way around:

|s1, s2,m1,m2〉 =
󰁛

s

Cs1,s2,s
m1,m2,m |s,m〉 , (m = m1 +m2). (4.177)

For example the 3/2× 1 tells us that

󰀏󰀏󰀏󰀏
3

2
, 1,

1

2
, 0

󰀠
=

󰁵
3

5

󰀏󰀏󰀏󰀏
5

2
,
1

2

󰀠
+

1√
15

󰀏󰀏󰀏󰀏
3

2
,
1

2

󰀠
− 1√

3

󰀏󰀏󰀏󰀏
1

2
,
1

2

󰀠
. (4.178)

If you put particles of spin-3/2 and spin-1 in the box, and you know that the first has m1 = 1/2 and the
second has m2 = 0 (so m = 1/2), and you measure the total spin, s, you could get 5/2 (with probability
3/5), or 3/2 (with probability 1/15), or 1/2 (with probability 1/3).
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4.5 Electromagnetic Interactions

4.5.1 Minimal Coupling

In classical electrodynamics, the force on a particle of charge q moving with a velocity v through electric
and magnetic fields E and B is given by the Lorentz force law:

F = q(E+ v×B). (4.179)

Lorentz force cannot be expressed as the gradient of a scalar potential energy function because it is
velocity dependent. For this reason, the Schrödinger equation in it’s original form (Equation 2.1) cannot
accommodate it. But in a more sophisticated form:

i󰄁
∂Ψ

∂t
= ĤΨ, (4.180)

there is no problem. The classical Hamiltonian for a particle of charge q and momentum p, in the presence
of electromagnetic fields is

H =
1

2m
(p− qA)2 + qφ, (4.181)

where A is the vector potential and φ is the scalar potential:

E = −∇φ− ∂A

∂t
, B = ∇×A. (4.182)

Making the standard substitution for momentum, we obtain the Hamiltonian operator

Ĥ =
1

2m
(−i󰄁∇− qA)2 + qφ, (4.183)

and the Schrödinger equation becomes

i󰄁
∂Ψ

∂t
=

󰀗
1

2m
(−i󰄁∇− qA)2 + qφ

󰀘
Ψ. (4.184)

This is the quantum implementation of the Lorentz force law; it is sometimes called the minimal coupling
rule.

4.5.2 The Aharonov-Bohm Effect

Classical electrodynamics is invariant under gauge transformations:

φ′ ≡ φ− ∂Λ

∂t
, A′ ≡ A+∇Λ. (4.185)

In quantum mechanics the potentials play a more direct role, and it is of interest to ask whether quantum
mechanics remains gauge invariant. The Schrödinger equation (Equation 4.184) remains invariant under
the transformation

Ψ′ ≡ eiqΛ/󰄁Ψ (4.186)

with the gauge-transformed potentials φ′ and A′. Since Ψ′ only differs by a phase factor, it represents
the same physical state, and in this sense quantum mechanics is gauge-invariant. For a long time it was
taken for granted that there could be no electromagnetic influences in regions where E and B are zero any
more than there can be in the classical theory. But in 1959 Aharonov and Bohm showed that the vector
potential can affect the quantum behaviour of a charged particle, even when the particle is confined to a
region where the field itself is zero.
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Imagine a particle constrained to move in a circle of radius b. Along the axis runs a solenoid of radius
a < b, carrying a steady electric current I. If the solenoid is extremely long, the magnetic field inside it
is uniform, and the field outside is zero.

Figure 13: Charged bead on a circular ring through which a solenoid passes.

The vector potential outside the solenoid is not zero; in fact, using B = ∇ × A and integrating with
respect to da, we can show that

A =
Φ

2πr
φ̂, (r > a), (4.187)

where Φ = πa2B is the magnetic flux through the solenoid. Meanwhile, the solenoid itself is uncharged,
so the scalar potential φ is zero. From Equation 4.183, we have

Ĥ =
1

2m

󰀅
−󰄁2∇2 + q2A2 + 2i󰄁qA ·∇

󰀆
, (4.188)

and since the wave function is constrained to move along the wire, we can use the substitutions θ = π/2,

r = b, so ∇ →
󰀓
φ̂/b

󰀔
(d/dφ) using cylindrical coordinates. Therefore

1

2m

󰀥
−󰄁2

b2
d2

dφ2
+

󰀕
qΦ

2πb

󰀖2

+ i
󰄁qΦ
πb2

d

dφ

󰀦
ψ(φ) = Eψ(φ). (4.189)

This is a linear differential equation with constant coefficients:

d2ψ

dφ2
− 2iβ

dψ

dφ
+ 󰂃ψ = 0, (4.190)

where

β ≡ qΦ

2π󰄁
and 󰂃 ≡ 2mb2E

󰄁2
− β2. (4.191)

Solutions are of the form

ψ = Aeiλφ, (4.192)

with

λ = β ±
󰁳

β2 + 󰂃 = β ± b

󰄁
√
2mE. (4.193)

Continuity of ψ(φ), at φ = 2π, requires that λ be an integer:

β ± b

󰄁
√
2mE = n, (4.194)

and it follows that

En =
󰄁2

2mb2

󰀕
n− qΦ

2π󰄁

󰀖2

=
󰄁2

2mb2

󰀕
n− qa2B

2󰄁

󰀖2

, n ∈ Z. (4.195)

Positive n, representing a particle traveling in the same direction as the current in the solenoid, has a
somewhat lower energy (assuming q > 0) than negative n, describing a particle travelling in the opposite
direction. More importantly, the allowed energies for the particle clearly depend on the field inside the
solenoid, even though the field at the location of the particle is zero!
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More generally, suppose a particle is moving through a region where B = 0 (so ∇×A = 0), but A
itself is not. The Schrödinger equation,

󰀗
1

2m
(−i󰄁∇− qA)2

󰀘
Ψ = i󰄁

∂Ψ

∂t
, (4.196)

can be simplified by writing

Ψ = eigΨ′, (4.197)

where

g(r) ≡ q

󰄁

󰁝 r

O
A(r′) · dr′ , (4.198)

and O is some arbitrarily chosen reference point. (Note that this definition makes sense only when
∇ × A = 0 throughout the region in question - otherwise the line integral would depend on the path
taken from O to r, and hence would not define a function of r.) In terms of Ψ′, the gradient of Ψ is

∇Ψ = eig(i∇g)Ψ′ + eig
󰀃
∇Ψ′󰀄, (4.199)

but ∇g = (q/󰄁)A, so

(−i󰄁∇− qA)Ψ = −i󰄁eig∇Ψ′, (4.200)

and it follows that

(−i󰄁∇− qA)2Ψ = −󰄁2eig∇2Ψ′. (4.201)

Putting this into Equation 4.196, and cancelling the common factor of eig, we are left with

− 󰄁2

2m
∇2Ψ′ = i󰄁

∂Ψ′

∂t
. (4.202)

Evidently Ψ′ solves the Schrödinger equation without A. If we want to correct for the presence of the curl-
free vector potential, we just add on the phase factor eig. Aharonov and Bohm proposed an experiment in
which a beam of electrons is split in two, and they pass either side of a long solenoid before recombining.

Figure 14: The Aharonov-Bohm effect: Electron beam splits around solenoid.

The electron beam experiences B = 0, but A is not zero, and the two beams arrive with different phases:

g =
q

󰄁

󰁝
A · dr =

qΦ

2π󰄁

󰁝 󰀕
1

r
φ̂

󰀖
·
󰀓
rφ̂ dφ

󰀔
= ±qΦ

2󰄁
. (4.203)

The plus sign applies to the electrons travelling in the same direction as A - the same direction of current
in the solenoid. The phase shift is proportional to the magnetic field inside of the solenoid.

phase difference =
qΦ

󰄁
=

qπa2B

󰄁
. (4.204)

The phase shift can be measured using the interference pattern on a screen. Note, however, this does not
make A itself measurable. Only the enclosed flux comes into the final answer, and quantum mechanics
remains gauge invariant. Unlike classical mechanics, the vector potential is of physical significance in
quantum mechanics.
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5 Identical Particles

5.1 Two Particle Systems

The state for a two-particle system is a function of the coordinates of particle one (r1), the coordinates
of particle two (r2), and the time, t:

Ψ(r1, r2, t). (5.1)

Its time evolution is determined by the Schrödinger equation:

i󰄁
∂Ψ

∂t
= ĤΨ, (5.2)

where H is the Hamiltonian:

Ĥ = − 󰄁2

2m1
∇2

1 −
󰄁2

2m2
∇2

2 + V (r1, r2, t). (5.3)

The statistical interpretation carries over:

|Ψ(r1, r2, t)|2 d3r1 d3r2 , (5.4)

is the probability of finding particle 1 in the volume d3r1 and particle 2 in the volume d3r2. As always,
this needs to be normalised:
󰁝

|Ψ(r1, r2, t)|2 d3r1 d3r2 = 1. (5.5)

For time-independent potentials, we obtain a complete set of solutions by separation of variables:

Ψ(r1, r2, t) = ψ(r1, r2)e
−iEt/󰄁, (5.6)

where the spatial wave function (ψ) satisfies the time-independent Schrödinger equation:

− 󰄁2

2m1
∇2

1ψ − 󰄁2

2m2
∇2

2ψ + V ψ = Eψ, (5.7)

and E is the total energy of the system. In general, solving this equation is difficult, but two special cases
can be reduced to one-particle problems:

1. Noninteracting particles. Consider two noninteracting particles that are each subject to some
external force. E.g. attached to two different springs.

V (r1, r2) = V1(r1) + V2(r2), (5.8)

In that case Equation 5.7 can be solved using separation of variables:

ψ(r1, r2) = ψa(r1)ψb(r2). (5.9)

Plugging this equation into Equation 5.7, we find two equations that tell us ψa and ψb each satisfy
the one-particle Schrödinger equation:

− 󰄁2

2m1,2
∇2

1,2ψa,b(r1,2) + V1,2(r1,2)ψa,b(r1,2) = Ea,bψa,b(r1,2). (5.10)

In this case the two-particle wave function is:

Ψ(r1, r2, t) = ψa(r1)ψb(r2)e
−i(Ea+Eb)t/󰄁 (5.11)

=
󰀓
ψa(r1)e

−iEat/󰄁
󰀔󰀓

ψb(r2)e
−iEbt/󰄁

󰀔
= Ψa(r1, t)Ψb(r2, t), (5.12)

we can say that particle 1 is in state a, and particle 2 is in state b. Any linear combination of such
solutions will also satisfy the (time-dependent) Schrödinger equation:

Ψ(r1, r2, t) =
3

5
Ψa(r1, t)Ψb(r2, t) +

4

5
Ψc(r1, t)Ψd(r2, t). (5.13)

In this case each particle’s state depends on the other. If you measured the energy of particle 1,
you might get Ea (with probability 9/25), in which case the energy of particle 2 is definitely Eb.
These two particles are entangled. An entangled state is one that cannot be written as a product
of single-particle states.
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2. Central potentials. Suppose the particles only interact via a potential that depends on their
separation: V (r1, r2) → V (|r1 − r2|). The hydrogen atom would be an example, if you include the
motion of the proton. In this case the two-body problem reduces to an equivalent one-body problem.
In general, two particles will be subjected to both external forces and to mutual interactions which
makes analysis more complicated. E.g. think of the two electrons in a helium atom: each feels the
Coulomb attraction of the nucleus (charge 2e), and at the same time they repel each other:

V (r1, r2) =
1

4π󰂃0

󰀕
− 2e2

|r1|
− 2e2

|r2|
+

e2

|r1 − r2|

󰀖
. (5.14)

5.1.1 Bosons and Fermions

Suppose we have two noninteracting particles, particle 1 is in state ψa and particle 2 is in ψb. The wave
function describing this system would be

ψ(r1, r2) = ψa(r1)ψb(r2). (5.15)

This assumes that the particles are distinguishable because otherwise it wouldn’t make sense to claim
that particle 1 is in state ψa and particle 2 is in ψb. Quantum mechanics neatly accommodates the
existence of particles that are indistinguishable in principle: We simply construct a wave function that is
noncommittal as to which particle is in which state. There are two ways to do this:

ψ±(r1, r2) = A[ψa(r1)ψb(r2)± ψb(r1)ψa(r2)], (5.16)

the theory admits two kinds of identical particles: bosons (the plus sign), and fermions (the minus
sign). Boson states are symmetric under the interchange ψ+(r1, r2) = ψ+(r2, r1); fermion states are
antisymmetric under this interchange, ψ−(r1, r2) = −ψ−(r2, r1). It so happens that

󰀫
all particles with integer spin are bosons, and

all particles with half integer spin are fermions.
(5.17)

It follows that two identical fermions (e.g. two electrons) cannot occupy the same state. If ψa = ψb, then

ψ−(r1, r2) = A[ψa(r1)ψa(r2)− ψa(r1)ψa(r2)] = 0, (5.18)

and we are left with no wave function at all. This is the famous Pauli exclusion principle. Note that
we are neglecting the spin, for example if the two fermions were in the same spin state.

Suppose we have two non-interacting particles, both of mass m, in the infinite square well. The one-
particle states are

ψn(x) =

󰁵
2

a
sin

󰀓nπ
a
x
󰀔
, En = n2K (5.19)

where K ≡ π2󰄁2/2ma2. If the particles are distinguishable, with particle 1 in state n1 and particle 2 in
state n2, the composite wave function is a simple product:

ψn1,n2(x1, x2) = ψn1(x1)ψn2(x2), En1,n2 =
󰀃
n2
1 + n2

2

󰀄
K. (5.20)

For example, the ground state is

ψ1,1 =
2

a
sin

󰀓πx1
a

󰀔
sin

󰀓πx2
a

󰀔
, E1,1 = 2K; (5.21)

the first excited state is doubly degenerate:

ψ1,2 =
2

a
sin

󰀓πx1
a

󰀔
sin

󰀕
2πx2
a

󰀖
, E1,2 = 5K; (5.22)

ψ2,1 =
2

a
sin

󰀕
2πx1
a

󰀖
sin

󰀓πx2
a

󰀔
, E2,1 = 5K; (5.23)

and so on. If the two particles are identical bosons, the ground state is unchanged, but the first excited
state is nondegenerate:

ψ =

√
2

a

󰀗
sin

󰀓πx1
a

󰀔
sin

󰀕
2πx2
a

󰀖
+ sin

󰀕
2πx1
a

󰀖
sin

󰀓πx2
a

󰀔󰀘
, E = 5K. (5.24)

And if the particles are identical fermions, there is no state with energy 2K; the ground state is

ψ =

√
2

a

󰀗
sin

󰀓πx1
a

󰀔
sin

󰀕
2πx2
a

󰀖
− sin

󰀕
2πx1
a

󰀖
sin

󰀓πx2
a

󰀔󰀘
, E = 5K. (5.25)
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5.1.2 Exchange Forces

Lets investigate what the symmetrisation requirement (Equation 5.16) actually does. Consider particle 1
is in state ψa(x), and the other is in state ψb(x), and these two states are orthogonal and normalised. If
the two particles are distinguishable, then the combined wave function is

ψ(x1, x2) = ψa(x1)ψb(x2); (5.26)

if they are identical bosons, the composite wave function is

ψ+(x1, x2) =
1√
2
[ψa(x1)ψb(x2) + ψb(x1)ψa(x2)]; (5.27)

and if they are identical fermions, it is

ψ−(x1, x2) =
1√
2
[ψa(x1)ψb(x2)− ψb(x1)ψa(x2)] (5.28)

Lets calculate the expectation value of the square of the separation distance between the two particles,

󰀍
(x1 − x2)

2
󰀎
=

󰀍
x21

󰀎
+
󰀍
x22

󰀎
− 2 〈x1x2〉 . (5.29)

1. Case 1: Distinguishable particles. For the wave function in Equation 5.26,

󰀍
x21

󰀎
=

󰁝
x21|ψa(x1)|2 dx1

󰁝
|ψb(x2)|2 dx2 =

󰀍
x2

󰀎
a
, (5.30)

󰀍
x22

󰀎
=

󰁝
|ψa(x1)|2 dx1

󰁝
x22|ψb(x2)|2 dx2 =

󰀍
x2

󰀎
b
, (5.31)

〈x1x2〉 =
󰁝

x21|ψa(x1)|2 dx1
󰁝

x22|ψb(x2)|2 dx2 = 〈x〉a 〈x〉b , (5.32)

Therefore, from Equation 5.29,

󰀍
(x1 − x2)

2
󰀎
d
=

󰀍
x2

󰀎
a
+

󰀍
x2

󰀎
b
− 2 〈x〉a 〈x〉b . (5.33)

2. Case 2: Identical particles. For the wave function in Equation 5.16, we have

󰀍
x21

󰀎
=

󰁝
ψ∗
±(x1, x2)x

2
1ψ±(x1, x2) dx1 dx2 (5.34)

=
1

2

󰀗󰁝
x21

󰀏󰀏ψa(x1)
2
󰀏󰀏 dx1

󰁝
|ψb(x2)|2 dx2

󰀘
(5.35)

+

󰁝
x21|ψb(x1)|2 dx1

󰁝
|ψa(x2)|2 dx2 (5.36)

±
󰁝

x21ψa(x1)
∗ψb(x1) dx1

󰁝
ψb(x2)

∗ψa(x2) dx2 (5.37)

±
󰁝

x21ψb(x1)
∗ψa(x1) dx1

󰁝
ψa(x2)

∗ψb(x2) dx2 (5.38)

=
1

2

󰀅󰀍
x2

󰀎
a
+

󰀍
x2

󰀎
b
± 0± 0

󰀆
=

1

2

󰀃󰀍
x2

󰀎
a
+

󰀍
x2

󰀎
b

󰀄
. (5.39)

Similarly,

󰀍
x22

󰀎
=

1

2

󰀃󰀍
x2

󰀎
b
+

󰀍
x2

󰀎
a

󰀄
, (5.40)

so
󰀍
x21

󰀎
=

󰀍
x22

󰀎
which makes sense because the particles are identical. Now

〈x1x2〉 =
󰁝

ψ∗
±(x1, x2)x1x2ψ±(x1, x2) dx1 dx2 (5.41)

=
1

2

󰀗󰁝
x1

󰀏󰀏ψa(x1)
2
󰀏󰀏 dx1

󰁝
x2|ψb(x2)|2 dx2

󰀘
(5.42)

+

󰁝
x1|ψb(x1)|2 dx1

󰁝
x2|ψa(x2)|2 dx2 (5.43)

±
󰁝

x21ψa(x1)
∗ψb(x1) dx1

󰁝
ψb(x2)

∗ψa(x2) dx2 (5.44)

±
󰁝

x1ψb(x1)
∗ψa(x1) dx1

󰁝
x2ψa(x2)

∗ψb(x2) dx2 (5.45)

=
1

2
(〈x〉a 〈x〉b + 〈x〉b 〈x〉a ± 〈x〉ab 〈x〉ba ± 〈x〉ba 〈x〉ab) (5.46)

= 〈x〉a 〈x〉b ± |〈x〉ab|
2, (5.47)
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where

〈x〉ab ≡
󰁝

xψa(x)
∗ψb(x) dx . (5.48)

Therefore, from equation 5.29:

󰀍
(x1 − x2)

2
󰀎
± =

󰀍
x2

󰀎
A
+

󰀍
x2

󰀎
b
− 2 〈x〉a 〈x〉b ∓ 2|〈x〉ab|

2. (5.49)

Comparing the equations for the distinguishable particles and identical particles, we see that the difference
resides in the additional final term:
󰁇
(∆x)2

󰁈

±
=

󰁇
(∆x)2

󰁈

d
∓ 2|〈x〉ab|

2; (5.50)

identical bosons tend to be closer together, and identical fermions are further apart, than distinguishable
particles in the same two states. Notice that 〈x〉ab (Equation 5.48) vanishes in regions where the two
wave functions do not overlap. In these regions, it’s not necessary to antisymmetrise the wave function.
Therefore, it is okay to pretend that electrons with non-overlapping wave functions are distinguishable.

In the case of overlapping wave functions, 〈x〉ab ∕= 0. According to Equation 5.50, the system behaves as
though there were a ”force of attraction” between identical bosons, and a ”force of repulsion” between
identical fermions. We call this an exchange force, although it’s not really a force at all - no physical
agency is pushing on the particles; rather, it is a purely geometrical consequence of the symmetrisation
requirement. It is also a strictly quantum mechanical phenomenon with no classical counterpart.

5.1.3 Spin

The complete state of an electron includes not only its position wave function, but also a spinor, describing
the orientation of its spin:

ψ(r)χ. (5.51)

In a two-particle state,

ψ(r1, r2)χ(1, 2) (5.52)

it is the whole thing, not just the spatial part, that needs to be antisymmetric with respect to exchange

ψ(r1, r2)χ(1, 2) = −ψ(r2, r1)χ(2, 1). (5.53)

Now, looking back at the composite spin states (Equations 4.171 and 4.172) reveals that the singlet
combination is antisymmetric (and hence would need to be joined with a symmetric spatial function),
whereas the three triplet states are all symmetric (and would require an antisymmetric spatial function).
Thus the Pauli principle actually allows two electrons in a given position state, as long as their spins are
in the singlet configuration (but not in the same position state and in the same spin state).

5.2 Atoms

A neutral atom, of atomic number Z, consists of a heavy nucleus, with electric charge Ze, surrounded by
Z electrons. The Hamiltonian for this system is

Ĥ =

Z󰁛

j=1

󰀝
− 󰄁2

2m
∇2

j −
󰀕

1

4π󰂃0

󰀖
Ze2

rj

󰀞
+

1

2

󰀕
1

4π󰂃0

󰀖 Z󰁛

j ∕=k

e2

|rj − rk|
. (5.54)

The first term represents the kinetic plus potential energy of the jth electron in the electric field of the
nucleus; the second sum is the potential energy associated with the mutual repulsion of the electrons (the
factor of 1/2 avoids double counting). The problem now is to solve the Schrödinger equation,

Ĥψ = Eψ, (5.55)

for the wave function ψ(r1, r2, ..., rz). Unfortunately, the Schrödinger equation with this Hamiltonian
cannot be solved exactly, except for the simplest case, Z = 1. In practice, one must resort to approximation
methods. For now we’re going to sketch out the qualitative features of the solutions, obtained by neglecting
electron repulsion.

38



5.2.1 Helium

The Hamiltonian for helium is

Ĥ =

󰀝
− 󰄁2

2m
∇2

1 −
1

4π󰂃0

2e2

r1

󰀞
+

󰀝
− 󰄁2

2m
∇2

2 −
1

4π󰂃0

2e2

r2

󰀞
+

1

4π󰂃0

e2

|r1 − r2|
, (5.56)

which consists of two hydrogenic Hamiltonians (with nuclear charge 2e), one for electron 1 and one for
electron 2. If we ignore the term regarding the repulsion of the electrons, then the Schrödinger equation
separates, and the solutions can be written as products of hydrogen wave functions:

ψ(r1, r2) = ψnlm(r1)ψn′l′m′(r2), (5.57)

with only half the Bohr radius, and four times the Bohr energies. The total energy would be

E = 4(En + En′), (5.58)

where En = −13.6/n2 eV. In particular, the ground state would be

ψ0(r1, r2) = ψ100(r1)ψ100(r2) =
8

πa3
e−2(r1+r2)/a, (5.59)

where the extra factors come from the adjustments mentioned previously. The energy of the grounds
state would be

E0 = 8(−13.6eV) = −109eV. (5.60)

Because ψ0 is a symmetric function, the spin state has to be antisymmetric, so the ground state of helium
should be a singlet configuration, with spins oppositely aligned. The excited states of helium consist of
one electron in the hydrogenic ground state, and the other in an excited state:

ψnlmψ100. (5.61)

If you try put both electrons in excited states, one immediately drops to the ground state, releasing
enough energy to knock the other one into the continuum (E > 0), leaving you with a helium ion and a
free electron.

C =

󰀗
(1− r)n − 1

r

󰀘
(5.62)
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