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1 Larmor Precession

Consider a spin-1/2 particle with a gyromagnetic ratio γ, at rest in a static magnetic field B0k̂. The Hamiltonian
for this system is
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1 0
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󰀖
(1)

Evidently, the eigenstates of Ĥ are
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As expected from classical mechanics, energy is lowest when the dipole moment is parallel to the field. We note
that the Hamiltonian is time-independent, which means the general solution to the time-dependent Schrödinger
equation,

i󰄁
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can be expressed in terms of the stationary states:
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To determine the constants a and b, we impose the initial conditions:
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󰀖
(5)

where normalisation requires |a|2 + |b|2 = 1. Writing a = cos(α/2) and b = sin(α/2), where α is a fixed angle
whose physical significance will be clear in a moment. We have
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To see what’s happening here, lets calculate the expectation value of Ŝ in different directions:
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By similar calculations,
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Figure 1: Spin precession around the z-axis at an angle α due to a static magnetic field B0ẑ

Thus,
󰁇
Ŝ
󰁈

is tilted at a constant angle α to the z-axis, and precesses about the z-axis at the Larmor

frequency ω = γB0, just as it would classically as predicted by the Ehrenfest theorem:
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for some operator Â. You can see this by trying Â = x̂ or Â = p̂ = −i󰄁 ∂
∂x to show that expectation values

reconcile quantum mechanical equations with classical equations.

2 Nuclear Magnetic Resonance

We saw in the last section that a spin-1/2 particle with gyromagnetic ratio γ is at rest in a static magnetic field

B0k̂, it precesses at the Larmor frequency. Now, consider turning on a small transverse radio frequency field,
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󰁬
, so the total field is
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The Hamiltonian is given by
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The difference between this Hamiltonian and the Hamitonian for the static field case in the previous section
is that we now have time-dependence so we can no longer use the stationary states. We need to solve the

time-dependent Schrödinger equation for a general state χ =
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This gives the system of equations:
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ḃ = −iγ2
󰀃
B0b−Brfe

−iωta
󰀄
= i

2

󰀃
Ωe−iωta− ω0b

󰀄 (15)

where Ω = γBrf is related to the strength of the RF field. To solve for a(t) and b(t), we can differentiate with
respect to time to decouple the system and imposing the initial conditions, a(0) = a0 and b(0) = b0, we have

a(t) =
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where ω′ =
󰁳
(ω − ω0)2 + Ω2. If a particle is initially in the spin up state (a0 = 1, b0 = 0), the probability of

transition into the down state would be

b(t) =
i

ω′Ω sin(ω′t/2)e−iωt/2 −→ P↓(t) = |b(t)|2 =
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(ω − ω0)2 + Ω2
sin2(ω′t/2) (18)

Figure 2: The oscillatory probability of transitioning from spin up to spin down.

Equation 18 is plotted in Figure 2, shows that initially, the probability of transition is zero, but over time,
there is an oscillation between the particle being with certainty in the spin down state, and certainty of being
in the spin up state. The frequency at which this probability flips is called the Rabi frequency ω′/2.

The coefficient in front of the sin2(ω′t/2) determines how the perturbing RF frequency affects the spin of
the spin-1/2 particle. This coefficient is called the resonance factor

P (ω) =
Ω2

(ω − ω0)2 + Ω2
(19)

which has a peak at the Larmor frequency.

Figure 3: The resonance curve having a maximum at the Larmor frequency ω0

Thus, for the perturbing RF field to have the maximum effect, its frequency ω must equal the spin-1/2
particle’s Larmor frequency ω0. Additionally we can find the FWHM of the peak by

P =
1

2
=⇒ (ω − ω0)

2 = Ω2 =⇒ ω = ω0 ± Ω, so that ∆ω = ω+ − ω− = 2Ω = 2γBrf. (20)

Thus, for this resonant frequency to be accurately determined through experiment, the peak of the resonance
curve must be narrow, meaning that the perturbing RF magnetic field must be very weak compared to the
primary magnetic field, Brf << B0.
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