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In classical mechanics, oscillatory motion is governed by Hooke’s law,

F = −kx = m
d2x

dt2
(1)

with solution x(t) = A sin(ωt) +B cos(ωt) where the angular frequency is ω =
󰁴

k
m .

The potential energy is V (x) = 1
2kx

2. If we expand V (x) around the local minimum x0 we get

V (x) = V (x0) + V ′(x0)(x− x0) +
1

2
V ′′(x0)(x− x0)

2 + ..., (2)

We can subtract the V (x0) since adding a constant doesn’t change the force, also recognise V (x0) =
0 and drop higher order terms, we get

V (x) ≈ 1

2
V ′′(x0)(x− x0)

2 (3)

≈ 1

2
mω2(x− x0)

2. (4)

The quantum problem requires us to solve the Schrödinger equation

− 󰄁2

2m

d2ψ

dx2
+

1

2
mω2x2ψ = Eψ. (5)

which can be written as

1

2m

󰀅
p̂2 + (mωx)2

󰀆
ψ = Eψ (6)

We cannot factor the brackets using complex numbers because operators do not necessarily com-
mute. This motivates the quantities

â± ≡ 1√
2󰄁mω

(∓ip̂+mωx) (7)

The product â−â+ becomes

â−â+ =
1

2󰄁mω
(ip̂+mωx)(−ip̂+mωx) (8)

=
1

2󰄁mω

󰀅
p̂2 + (mωx)2 − imω(xp̂− p̂x)

󰀆
(9)

=
1

2󰄁mω

󰀅
p̂2 + (mωx)2

󰀆
− i

2󰄁
[x, p̂] (10)

=
1

󰄁ω
Ĥ +

1

2
. (11)

Similarly,

â+â− =
1

󰄁
ωĤ − 1

2
. (12)
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In particular, [â−, â+] = 1. Meanwhile, the Schrödinger equation takes the form

󰄁ω
󰀕
â±â∓ ± 1

2

󰀖
ψ = Eψ (13)

It can be shown that if ψ satisfies the Schrödinger equation with energy E, then â+ψ satisfies the
equation with energy (E + 󰄁ω). Similarly, â−ψ satisfies the equation with energy (E − 󰄁ω).

There occurs a ”lowest rung” such that â−ψ0 = 0:

1√
2󰄁mω

󰀕
󰄁
d

dx
+mωx

󰀖
ψ0 = 0 (14)

and rearranging,

dψ0

dx
= −mω

󰄁
xψ0. (15)

Whose solution becomes

ψ0(x) =
󰀓mω

π󰄁

󰀔1/4

e−
mω
2󰄁 x2

. (16)

To determine the energy of this state we plug it into the Schrödinger equation (13) to obtain

E0 =
1

2
󰄁ω. (17)

Now that we have defined the ground state of the quantum oscillator, we simply apply the raising
operator repeatedly to generate the excited states while increasing the energy by 󰄁ω each step:

ψn(x) = An(â+)
nψ0(x), with En =

󰀕
n+

1

2

󰀖
󰄁ω. (18)

Now we need to find an expression for the coefficients so we are not required to normalise the wave
function each time. We begin by noting that â± is the hermitian conjugate of â∓

󰁝 ∞

−∞
f ∗ (â±g) dx =

󰁝 ∞

−∞
(â∓f) ∗ g dx (19)

so that
󰁝 ∞

−∞
(â±ψn)

∗(â±ψn) dx =

󰁝 ∞

−∞
(â∓â±ψn) ∗ ψn dx . (20)

Using equation 13, we get

â+ψn =
√
n+ 1ψn+1, â−ψn =

√
nψn−1. (21)

Thus

ψ1 =
1√
1!
â+ψ0, ψ2 =

1√
2
â+ψ1 =

1√
2 · 1

(â+)
2ψ0, ψ3 =

1√
3
â+ψ2 =

1√
3 · 2 · 1

(â+)
3ψ0

and we have

ψn =
1√
n!
(â+)

nψ0 (22)

=
1√
n!

󰀓mω

π󰄁

󰀔1/4

(â+)
ne−

mω
2󰄁 x2

(23)

which is the general wave function of the quantum harmonic oscillator with energy level

En = 󰄁ω
󰀕
n+

1

2

󰀖
(24)
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