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1 The Raleigh-Jeans Radiation Law

Consider a cube of length L where radiation is being reflected off the walls. Standing waves occur
only if an integer number of half wavelengths fit into L. That is, L = nλ/2. Or

λ =
2L

m
(1)

or

f =
mc

2L
(2)

Switching to k-space, we obtain

k =
2π

λ
=

2πf

c
=

mπ

L
(3)

using Equation 2. If mx, my, mz are the integers for three orthogonal directions in k-space, then:

k2 = π2

󰀗󰀓mx

L

󰀔2

+
󰀓my

L

󰀔2

+
󰀓mz

L

󰀔2
󰀘

(4)

or

m2
x +m2

y +m2
z =

4L2f2

c2
(5)

Still in k-space, a spherical shell of radius R and outer radius R+ dr is given by

dV = 4πR2 dR . (6)

If R =
󰁴
m2

x +m2
y +m2

z, then

R =

󰁵
4L2f2

c2
=

2Lf

c
. (7)

Differentiating,

dR =
2Ldf

c
. (8)

Putting Equation 7 and Equation 8 back into Equation 6 gives

dV = 4π

󰀕
2Lf

c

󰀖2󰀕
2L

c

󰀖
df (9)

= 32π

󰀕
L3f2

c3

󰀖
df (10)
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However, we require mx, my, mz to be positive. Thus, we take only one octant of the spherical
volume. So the number dN for the non-negative combinations of mx, my, mz in this volume is
given by dN = 1/8 dV . Therefore

dN = 4πf2

󰀕
L

c

󰀖3

df . (11)

From thermodynamics, the average kinetic energy per degree of freedom is 1/2kBT . For harmonic
oscillators, the kinetic energy and potential energies are of same magnitude so the average energy
is given by 〈E〉 = kBT . Thus,

dE

df
= kBT

dN

df
= 4πkBTf

2

󰀕
L

c

󰀖3

(12)

and the average energy density u is given by

du

df
=

1

L3

dE

df
=

4πkBTf
2

c3
. (13)

However, we have only considered one polarisation of light, but there is another. So therefore we
have

du

df
=

8πkBTf
2

c3
(14)

Or, in terms of wavelength:

du

df
= uf =

8π

λ4
kBT (15)

Equation 15 is the Raleigh-Jeans law of radiation and it holds for small frequencies. However, it
approaches a singularity at high frequencies and is not empirically supported as shown below.

Figure 1: Rayleigh-Jeans prediction compared to experimental data
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2 Planck’s Radiation Law

Max Planck assumed that energy comes in discrete packets of energy in integer multiples of 󰄁ω.
The crucial insight is that electromagnetic waves in a cavity can be described by quantum harmonic
oscillators. The energy of the system is E = (n + 1

2 )󰄁ω for n = 0, 1, 2, ...,, and so the Partition
Function is

Z =
󰁛

α

e−βEα =

∞󰁛

n=0

e−β(n+ 1
2 )󰄁ω = e−

1
2β󰄁ω

∞󰁛

n=0

e−nβ󰄁ω =
e−

1
2β󰄁ω

1− e−β󰄁ω . (16)

The internal energy of this system is given by

U = −d lnZ

dβ
= 󰄁ω

󰀕
1

2
+

1

eβ󰄁ω − 1

󰀖
(17)

The density of states of electromagnetic waves as a function of wave vector k is given by

g(k) dk =
4πk2 dk

(2π/L)3
× 2, (18)

where the cavity is a cube of length L and the factor of 2 corresponds to two possible polarisations
of the electromagnetic waves. Thus

g(k) dk =
V k2 dk

π2
(19)

and the density of states g(ω), now written as a function of frequency is

g(ω) = g(k)
dk

dω
=

g(k)

c
, (20)

and so

g(ω) dω =
V ω2 dω

π2c3
(21)

Now we can derive the internal energy for the photon gas by using the expression of U for a single
quantum harmonic oscillator in Equation 17 to give

U =

󰁝 ∞

0

g(ω)󰄁ω
󰀕
1

2
+

1

eβ󰄁ω − 1

󰀖
dω . (22)

There is a problem since the first time diverges in the integral

󰁝 ∞

0

g(ω)
1

2
󰄁ω dω → ∞. (23)

However, we can redefine our zero point of energy as 1
2󰄁ω so that this infinity is conveniently swept

underneath the rug. We are left with

U =

󰁝 ∞

0

g(ω)
󰄁ω

eβ󰄁ω − 1
dω =

V 󰄁
π2c3

󰁝 ∞

0

ω3 dω

eβ󰄁ω − 1
. (24)

Using the integral relation

󰁝 ∞

0

x3 dx

ex − 1
= ζ(4)Γ(4) =

π4

15
(25)

to obtain

U =

󰀕
V π2k4B
15c3󰄁3

󰀖
T 4 (26)
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Now using P = 1
4uc =

1
4
U
V c, we find that

P =
π2k4B
60c2󰄁3

T 4 = σT 4 (27)

where the Stefan-Boltzmann constant σ is

σ =
π2k4B
60c2󰄁3

= 5.67× 10−8 Wm−2 K−4 (28)

Equation 24 can be rewritten as

u =
U

V
=

󰁝
uω dω (29)

where uω is a different form of the spectral energy density as a function of angular frequency. It
thus takes the form

uω =
󰄁

π2c3
ω3

eβ󰄁ω − 1
(30)

This spectral density is known as the blackbody distribution. It’s also expressed in terms of
wavelength λ by the change of variables to get

uλ =
8πhc

λ5

1

eβhc/λ − 1
. (31)

This is in remarkable agreement with experimental data and we can see that for temperature of a
human body (310.15K), the maximum radiance occurs at ∼ 10−5m. This is the infrared region of
the electromagnetic spectrum, which is why infrared cameras are effective at spotting humans by
detecting infrared radiation coming from our body.

Figure 2: Planck’s Law of blackbody radiation plotted for a range of temperatures
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Note that at long wavelengths (low frequencies), when βhc/λ << 1, the exponential term can
be written as

eβhc/λ ≈ 1 +
βhc

λ
, (32)

using the Taylor Expansion. Thus, Equation 31 becomes

uλ =
8πhc

λ5

λ

βhc
=

8π

λ4
kBT (33)

in the limit of long wavelengths. This is identical to Rayleigh-Jeans Law in Equation 15.
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